made lemma about AALTs_subs stronger w.r.t. flts
theory Lexer
imports Spec
begin
section {* The Lexer Functions by Sulzmann and Lu (without simplification) *}
fun
mkeps :: "rexp \<Rightarrow> val"
where
"mkeps(ONE) = Void"
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
| "mkeps(STAR r) = Stars []"
fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
where
"injval (CHAR d) c Void = Char d"
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
fun
lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
where
"lexer r [] = (if nullable r then Some(mkeps r) else None)"
| "lexer r (c#s) = (case (lexer (der c r) s) of
None \<Rightarrow> None
| Some(v) \<Rightarrow> Some(injval r c v))"
section {* Mkeps, Injval Properties *}
lemma mkeps_nullable:
assumes "nullable(r)"
shows "\<Turnstile> mkeps r : r"
using assms
by (induct rule: nullable.induct)
(auto intro: Prf.intros)
lemma mkeps_flat:
assumes "nullable(r)"
shows "flat (mkeps r) = []"
using assms
by (induct rule: nullable.induct) (auto)
lemma Prf_injval_flat:
assumes "\<Turnstile> v : der c r"
shows "flat (injval r c v) = c # (flat v)"
using assms
apply(induct c r arbitrary: v rule: der.induct)
apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits)
done
lemma Prf_injval:
assumes "\<Turnstile> v : der c r"
shows "\<Turnstile> (injval r c v) : r"
using assms
apply(induct r arbitrary: c v rule: rexp.induct)
apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
apply(simp add: Prf_injval_flat)
done
text {*
Mkeps and injval produce, or preserve, Posix values.
*}
lemma Posix_mkeps:
assumes "nullable r"
shows "[] \<in> r \<rightarrow> mkeps r"
using assms
apply(induct r rule: nullable.induct)
apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
apply(subst append.simps(1)[symmetric])
apply(rule Posix.intros)
apply(auto)
done
lemma Posix_injval:
assumes "s \<in> (der c r) \<rightarrow> v"
shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
using assms
proof(induct r arbitrary: s v rule: rexp.induct)
case ZERO
have "s \<in> der c ZERO \<rightarrow> v" by fact
then have "s \<in> ZERO \<rightarrow> v" by simp
then have "False" by cases
then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
next
case ONE
have "s \<in> der c ONE \<rightarrow> v" by fact
then have "s \<in> ZERO \<rightarrow> v" by simp
then have "False" by cases
then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
next
case (CHAR d)
consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
proof (cases)
case eq
have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
then have "s \<in> ONE \<rightarrow> v" using eq by simp
then have eqs: "s = [] \<and> v = Void" by cases simp
show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs
by (auto intro: Posix.intros)
next
case ineq
have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
then have "False" by cases
then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
qed
next
case (ALT r1 r2)
have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'"
| (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'"
by cases auto
then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
proof (cases)
case left
have "s \<in> der c r1 \<rightarrow> v'" by fact
then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
next
case right
have "s \<notin> L (der c r1)" by fact
then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
moreover
have "s \<in> der c r2 \<rightarrow> v'" by fact
then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')"
by (auto intro: Posix.intros)
then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
qed
next
case (SEQ r1 r2)
have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
then consider
(left_nullable) v1 v2 s1 s2 where
"v = Left (Seq v1 v2)" "s = s1 @ s2"
"s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
| (right_nullable) v1 s1 s2 where
"v = Right v1" "s = s1 @ s2"
"s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
| (not_nullable) v1 v2 s1 s2 where
"v = Seq v1 v2" "s = s1 @ s2"
"s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)
then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v"
proof (cases)
case left_nullable
have "s1 \<in> der c r1 \<rightarrow> v1" by fact
then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
moreover
have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
next
case right_nullable
have "nullable r1" by fact
then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
moreover
have "s \<in> der c r2 \<rightarrow> v1" by fact
then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
moreover
have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
by(rule Posix.intros)
then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
next
case not_nullable
have "s1 \<in> der c r1 \<rightarrow> v1" by fact
then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
moreover
have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable
by (rule_tac Posix.intros) (simp_all)
then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
qed
next
case (STAR r)
have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
have "s \<in> der c (STAR r) \<rightarrow> v" by fact
then consider
(cons) v1 vs s1 s2 where
"v = Seq v1 (Stars vs)" "s = s1 @ s2"
"s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"
apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
apply(rotate_tac 3)
apply(erule_tac Posix_elims(6))
apply (simp add: Posix.intros(6))
using Posix.intros(7) by blast
then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v"
proof (cases)
case cons
have "s1 \<in> der c r \<rightarrow> v1" by fact
then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
moreover
have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
moreover
have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact
then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
then have "flat (injval r c v1) \<noteq> []" by simp
moreover
have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))"
by (simp add: der_correctness Der_def)
ultimately
have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
qed
qed
section {* Lexer Correctness *}
lemma lexer_correct_None:
shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
apply(induct s arbitrary: r)
apply(simp)
apply(simp add: nullable_correctness)
apply(simp)
apply(drule_tac x="der a r" in meta_spec)
apply(auto)
apply(auto simp add: der_correctness Der_def)
done
lemma lexer_correct_Some:
shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
apply(induct s arbitrary : r)
apply(simp only: lexer.simps)
apply(simp)
apply(simp add: nullable_correctness Posix_mkeps)
apply(drule_tac x="der a r" in meta_spec)
apply(simp (no_asm_use) add: der_correctness Der_def del: lexer.simps)
apply(simp del: lexer.simps)
apply(simp only: lexer.simps)
apply(case_tac "lexer (der a r) s = None")
apply(auto)[1]
apply(simp)
apply(erule exE)
apply(simp)
apply(rule iffI)
apply(simp add: Posix_injval)
apply(simp add: Posix1(1))
done
lemma lexer_correctness:
shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
and "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
using Posix1(1) lexer_correct_None lexer_correct_Some by blast
subsection {* A slight reformulation of the lexer algorithm using stacked functions*}
fun flex :: "rexp \<Rightarrow> (val \<Rightarrow> val) => string \<Rightarrow> (val \<Rightarrow> val)"
where
"flex r f [] = f"
| "flex r f (c#s) = flex (der c r) (\<lambda>v. f (injval r c v)) s"
lemma flex_fun_apply:
shows "g (flex r f s v) = flex r (g o f) s v"
apply(induct s arbitrary: g f r v)
apply(simp_all add: comp_def)
by meson
lemma flex_fun_apply2:
shows "g (flex r id s v) = flex r g s v"
by (simp add: flex_fun_apply)
lemma flex_append:
shows "flex r f (s1 @ s2) = flex (ders s1 r) (flex r f s1) s2"
apply(induct s1 arbitrary: s2 r f)
apply(simp_all)
done
lemma lexer_flex:
shows "lexer r s = (if nullable (ders s r)
then Some(flex r id s (mkeps (ders s r))) else None)"
apply(induct s arbitrary: r)
apply(simp_all add: flex_fun_apply)
done
lemma Posix_flex:
assumes "s2 \<in> (ders s1 r) \<rightarrow> v"
shows "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v"
using assms
apply(induct s1 arbitrary: r v s2)
apply(simp)
apply(simp)
apply(drule_tac x="der a r" in meta_spec)
apply(drule_tac x="v" in meta_spec)
apply(drule_tac x="s2" in meta_spec)
apply(simp)
using Posix_injval
apply(drule_tac Posix_injval)
apply(subst (asm) (5) flex_fun_apply)
apply(simp)
done
lemma injval_inj:
assumes "\<Turnstile> a : (der c r)" "\<Turnstile> v : (der c r)" "injval r c a = injval r c v"
shows "a = v"
using assms
apply(induct r arbitrary: a c v)
apply(auto)
using Prf_elims(1) apply blast
using Prf_elims(1) apply blast
apply(case_tac "c = x")
apply(auto)
using Prf_elims(4) apply auto[1]
using Prf_elims(1) apply blast
prefer 2
apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) val.distinct(25) val.inject(3) val.inject(4))
apply(case_tac "nullable r1")
apply(auto)
apply(erule Prf_elims)
apply(erule Prf_elims)
apply(erule Prf_elims)
apply(erule Prf_elims)
apply(auto)
apply (metis Prf_injval_flat list.distinct(1) mkeps_flat)
apply(erule Prf_elims)
apply(erule Prf_elims)
apply(auto)
using Prf_injval_flat mkeps_flat apply fastforce
apply(erule Prf_elims)
apply(erule Prf_elims)
apply(auto)
apply(erule Prf_elims)
apply(erule Prf_elims)
apply(auto)
apply (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
by (smt Prf_elims(6) injval.simps(7) list.inject val.inject(5))
lemma uu:
assumes "(c # s) \<in> r \<rightarrow> injval r c v" "\<Turnstile> v : (der c r)"
shows "s \<in> der c r \<rightarrow> v"
using assms
apply -
apply(subgoal_tac "lexer r (c # s) = Some (injval r c v)")
prefer 2
using lexer_correctness(1) apply blast
apply(simp add: )
apply(case_tac "lexer (der c r) s")
apply(simp)
apply(simp)
apply(case_tac "s \<in> der c r \<rightarrow> a")
prefer 2
apply (simp add: lexer_correctness(1))
apply(subgoal_tac "\<Turnstile> a : (der c r)")
prefer 2
using Posix_Prf apply blast
using injval_inj by blast
lemma Posix_flex2:
assumes "(s1 @ s2) \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
shows "s2 \<in> (ders s1 r) \<rightarrow> v"
using assms
apply(induct s1 arbitrary: r v s2 rule: rev_induct)
apply(simp)
apply(simp)
apply(drule_tac x="r" in meta_spec)
apply(drule_tac x="injval (ders xs r) x v" in meta_spec)
apply(drule_tac x="x#s2" in meta_spec)
apply(simp add: flex_append ders_append)
using Prf_injval uu by blast
lemma Posix_flex3:
assumes "s1 \<in> r \<rightarrow> flex r id s1 v" "\<Turnstile> v : ders s1 r"
shows "[] \<in> (ders s1 r) \<rightarrow> v"
using assms
by (simp add: Posix_flex2)
lemma flex_injval:
shows "flex (der a r) (injval r a) s v = injval r a (flex (der a r) id s v)"
by (simp add: flex_fun_apply)
lemma Prf_flex:
assumes "\<Turnstile> v : ders s r"
shows "\<Turnstile> flex r id s v : r"
using assms
apply(induct s arbitrary: v r)
apply(simp)
apply(simp)
by (simp add: Prf_injval flex_injval)
end