made lemma about AALTs_subs stronger w.r.t. flts
theory Exercises
imports Spec "~~/src/HOL/Library/Infinite_Set"
begin
section {* Some Fun Facts *}
fun
zeroable :: "rexp \<Rightarrow> bool"
where
"zeroable (ZERO) \<longleftrightarrow> True"
| "zeroable (ONE) \<longleftrightarrow> False"
| "zeroable (CHAR c) \<longleftrightarrow> False"
| "zeroable (ALT r1 r2) \<longleftrightarrow> zeroable r1 \<and> zeroable r2"
| "zeroable (SEQ r1 r2) \<longleftrightarrow> zeroable r1 \<or> zeroable r2"
| "zeroable (STAR r) \<longleftrightarrow> False"
lemma zeroable_correctness:
shows "zeroable r \<longleftrightarrow> L r = {}"
by(induct r)(auto simp add: Sequ_def)
fun
atmostempty :: "rexp \<Rightarrow> bool"
where
"atmostempty (ZERO) \<longleftrightarrow> True"
| "atmostempty (ONE) \<longleftrightarrow> True"
| "atmostempty (CHAR c) \<longleftrightarrow> False"
| "atmostempty (ALT r1 r2) \<longleftrightarrow> atmostempty r1 \<and> atmostempty r2"
| "atmostempty (SEQ r1 r2) \<longleftrightarrow>
zeroable r1 \<or> zeroable r2 \<or> (atmostempty r1 \<and> atmostempty r2)"
| "atmostempty (STAR r) = atmostempty r"
fun
somechars :: "rexp \<Rightarrow> bool"
where
"somechars (ZERO) \<longleftrightarrow> False"
| "somechars (ONE) \<longleftrightarrow> False"
| "somechars (CHAR c) \<longleftrightarrow> True"
| "somechars (ALT r1 r2) \<longleftrightarrow> somechars r1 \<or> somechars r2"
| "somechars (SEQ r1 r2) \<longleftrightarrow>
(\<not> zeroable r1 \<and> somechars r2) \<or> (\<not> zeroable r2 \<and> somechars r1) \<or>
(somechars r1 \<and> nullable r2) \<or> (somechars r2 \<and> nullable r1)"
| "somechars (STAR r) \<longleftrightarrow> somechars r"
lemma somechars_correctness:
shows "somechars r \<longleftrightarrow> (\<exists>s. s \<noteq> [] \<and> s \<in> L r)"
apply(induct r)
apply(simp_all add: zeroable_correctness nullable_correctness Sequ_def)
using Nil_is_append_conv apply blast
apply blast
apply(auto)
by (metis Star_decomp hd_Cons_tl list.distinct(1))
lemma atmostempty_correctness_aux:
shows "atmostempty r \<longleftrightarrow> \<not> somechars r"
apply(induct r)
apply(simp_all)
apply(auto simp add: zeroable_correctness nullable_correctness somechars_correctness)
done
lemma atmostempty_correctness:
shows "atmostempty r \<longleftrightarrow> L r \<subseteq> {[]}"
by(auto simp add: atmostempty_correctness_aux somechars_correctness)
fun
leastsinglechar :: "rexp \<Rightarrow> bool"
where
"leastsinglechar (ZERO) \<longleftrightarrow> False"
| "leastsinglechar (ONE) \<longleftrightarrow> False"
| "leastsinglechar (CHAR c) \<longleftrightarrow> True"
| "leastsinglechar (ALT r1 r2) \<longleftrightarrow> leastsinglechar r1 \<or> leastsinglechar r2"
| "leastsinglechar (SEQ r1 r2) \<longleftrightarrow>
(if (zeroable r1 \<or> zeroable r2) then False
else ((nullable r1 \<and> leastsinglechar r2) \<or> (nullable r2 \<and> leastsinglechar r1)))"
| "leastsinglechar (STAR r) \<longleftrightarrow> leastsinglechar r"
lemma leastsinglechar_correctness:
"leastsinglechar r \<longleftrightarrow> (\<exists>c. [c] \<in> L r)"
apply(induct r)
apply(simp)
apply(simp)
apply(simp)
prefer 2
apply(simp)
apply(blast)
prefer 2
apply(simp)
using Star.step Star_decomp apply fastforce
apply(simp add: Sequ_def zeroable_correctness nullable_correctness)
by (metis append_Nil append_is_Nil_conv butlast_append butlast_snoc)
fun
infinitestrings :: "rexp \<Rightarrow> bool"
where
"infinitestrings (ZERO) = False"
| "infinitestrings (ONE) = False"
| "infinitestrings (CHAR c) = False"
| "infinitestrings (ALT r1 r2) = (infinitestrings r1 \<or> infinitestrings r2)"
| "infinitestrings (SEQ r1 r2) \<longleftrightarrow>
(\<not> zeroable r1 \<and> infinitestrings r2) \<or> (\<not> zeroable r2 \<and> infinitestrings r1)"
| "infinitestrings (STAR r) = (\<not> atmostempty r)"
lemma Star_atmostempty:
assumes "A \<subseteq> {[]}"
shows "A\<star> \<subseteq> {[]}"
using assms
using Star_decomp concat_eq_Nil_conv empty_iff insert_iff subsetI subset_singletonD
apply(auto)
proof -
fix x :: "char list"
assume a1: "x \<in> A\<star>"
assume "\<And>c x A. c # x \<in> A\<star> \<Longrightarrow> \<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
then have f2: "\<forall>cs C c. \<exists>csa. c # csa \<in> C \<or> c # cs \<notin> C\<star>"
by auto
obtain cc :: "char list \<Rightarrow> char" and ccs :: "char list \<Rightarrow> char list" where
"\<And>cs. cs = [] \<or> cc cs # ccs cs = cs"
by (metis (no_types) list.exhaust)
then show "x = []"
using f2 a1 by (metis assms empty_iff insert_iff list.distinct(1) subset_singletonD)
qed
lemma Star_empty_string_finite:
shows "finite ({[]}\<star>)"
using Star_atmostempty infinite_super by auto
lemma Star_empty_finite:
shows "finite ({}\<star>)"
using Star_atmostempty infinite_super by auto
lemma Star_concat_replicate:
assumes "s \<in> A"
shows "concat (replicate n s) \<in> A\<star>"
using assms
by (induct n) (auto)
lemma concat_replicate_inj:
assumes "concat (replicate n s) = concat (replicate m s)" "s \<noteq> []"
shows "n = m"
using assms
apply(induct n arbitrary: m)
apply(auto)[1]
apply(auto)
apply(case_tac m)
apply(clarify)
apply(simp only: replicate.simps concat.simps)
apply blast
by simp
lemma A0:
assumes "finite (A ;; B)" "B \<noteq> {}"
shows "finite A"
apply(subgoal_tac "\<exists>s. s \<in> B")
apply(erule exE)
apply(subgoal_tac "finite {s1 @ s |s1. s1 \<in> A}")
apply(rule_tac f="\<lambda>s1. s1 @ s" in finite_imageD)
apply(simp add: image_def)
apply(smt Collect_cong)
apply(simp add: inj_on_def)
apply(rule_tac B="A ;; B" in finite_subset)
apply(auto simp add: Sequ_def)[1]
apply(rule assms(1))
using assms(2) by auto
lemma A1:
assumes "finite (A ;; B)" "A \<noteq> {}"
shows "finite B"
apply(subgoal_tac "\<exists>s. s \<in> A")
apply(erule exE)
apply(subgoal_tac "finite {s @ s1 |s1. s1 \<in> B}")
apply(rule_tac f="\<lambda>s1. s @ s1" in finite_imageD)
apply(simp add: image_def)
apply(smt Collect_cong)
apply(simp add: inj_on_def)
apply(rule_tac B="A ;; B" in finite_subset)
apply(auto simp add: Sequ_def)[1]
apply(rule assms(1))
using assms(2) by auto
lemma Sequ_Prod_finite:
assumes "A \<noteq> {}" "B \<noteq> {}"
shows "finite (A ;; B) \<longleftrightarrow> (finite (A \<times> B))"
apply(rule iffI)
apply(rule finite_cartesian_product)
apply(erule A0)
apply(rule assms(2))
apply(erule A1)
apply(rule assms(1))
apply(simp add: Sequ_def)
apply(rule finite_image_set2)
apply(drule finite_cartesian_productD1)
apply(rule assms(2))
apply(simp)
apply(drule finite_cartesian_productD2)
apply(rule assms(1))
apply(simp)
done
lemma Star_non_empty_string_infinite:
assumes "s \<in> A" " s \<noteq> []"
shows "infinite (A\<star>)"
proof -
have "inj (\<lambda>n. concat (replicate n s))"
using assms(2) concat_replicate_inj
by(auto simp add: inj_on_def)
moreover
have "infinite (UNIV::nat set)" by simp
ultimately
have "infinite ((\<lambda>n. concat (replicate n s)) ` UNIV)"
by (simp add: range_inj_infinite)
moreover
have "((\<lambda>n. concat (replicate n s)) ` UNIV) \<subseteq> (A\<star>)"
using Star_concat_replicate assms(1) by auto
ultimately show "infinite (A\<star>)"
using infinite_super by auto
qed
lemma infinitestrings_correctness:
shows "infinitestrings r \<longleftrightarrow> infinite (L r)"
apply(induct r)
apply(simp_all)
apply(simp add: zeroable_correctness)
apply(rule iffI)
apply(erule disjE)
apply(subst Sequ_Prod_finite)
apply(auto)[2]
using finite_cartesian_productD2 apply blast
apply(subst Sequ_Prod_finite)
apply(auto)[2]
using finite_cartesian_productD1 apply blast
apply(subgoal_tac "L r1 \<noteq> {} \<and> L r2 \<noteq> {}")
prefer 2
apply(auto simp add: Sequ_def)[1]
apply(subst (asm) Sequ_Prod_finite)
apply(auto)[2]
apply(auto)[1]
apply(simp add: atmostempty_correctness)
apply(rule iffI)
apply (metis Star_empty_finite Star_empty_string_finite subset_singletonD)
using Star_non_empty_string_infinite apply blast
done
unused_thms
end