made lemma about AALTs_subs stronger w.r.t. flts
import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
import scala.util.Try
def escape(raw: String) : String = {
import scala.reflect.runtime.universe._
Literal(Constant(raw)).toString
}
def esc2(r: (String, String)) = (escape(r._1), escape(r._2))
// usual regular expressions
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
// abbreviations
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
// values
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
// string of a regular expressions - for testing purposes
def string(r: Rexp): String = r match {
case ZERO => "0"
case ONE => "1"
case CHAR(c) => c.toString
case ALTS(rs) => rs.map(string).mkString("[", "|", "]")
case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
case STAR(r) => s"{${string(r)}}*"
case RECD(x, r) => s"(${x}! ${string(r)})"
}
//--------------------------------------------------------------
// START OF NON-BITCODE PART
//
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALTS(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r) => nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
}
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// injection part
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALTS(List(r1, r2)) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
case (CHAR(_), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
}
// lexing without simplification
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
//println(lexing(("ab" | "ab") ~ ("b" | ONE), "ab"))
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))
def F_RECD(f: Val => Val) = (v:Val) => v match {
case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALTS(List(r1, r2)) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case RECD(x, r1) => {
val (r1s, f1s) = simp(r1)
(RECD(x, r1s), F_RECD(f1s))
}
case r => (r, F_ID)
}
def ders_simp(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders_simp(s, simp(der(c, r))._1)
}
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
//println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))
def tokenise_simp(r: Rexp, s: String) =
env(lexing_simp(r, s)).map(esc2)
//--------------------------------------------------------------------
// Partial Derivatives
def pder(c: Char, r: Rexp): Set[Rexp] = r match {
case ZERO => Set()
case ONE => Set()
case CHAR(d) => if (c == d) Set(ONE) else Set()
case ALTS(rs) => rs.toSet.flatMap(pder(c, _))
case SEQ(r1, r2) =>
(for (pr1 <- pder(c, r1)) yield SEQ(pr1, r2)) ++
(if (nullable(r1)) pder(c, r2) else Set())
case STAR(r1) =>
for (pr1 <- pder(c, r1)) yield SEQ(pr1, STAR(r1))
case RECD(_, r1) => pder(c, r1)
}
def pders(cs: List[Char], r: Rexp): Set[Rexp] = cs match {
case Nil => Set(r)
case c::cs => pder(c, r).flatMap(pders(cs, _))
}
def pders_simp(cs: List[Char], r: Rexp): Set[Rexp] = cs match {
case Nil => Set(r)
case c::cs => pder(c, r).flatMap(pders_simp(cs, _)).map(simp(_)._1)
}
def psize(rs: Set[Rexp]) =
rs.map(size).sum
// A simple parser for regexes
case class Parser(s: String) {
var i = 0
def peek() = s(i)
def eat(c: Char) =
if (c == s(i)) i = i + 1 else throw new Exception("Expected " + c + " got " + s(i))
def next() = { i = i + 1; s(i - 1) }
def more() = s.length - i > 0
def Regex() : Rexp = {
val t = Term();
if (more() && peek() == '|') {
eat ('|') ;
ALT(t, Regex())
}
else t
}
def Term() : Rexp = {
var f : Rexp =
if (more() && peek() != ')' && peek() != '|') Factor() else ONE;
while (more() && peek() != ')' && peek() != '|') {
f = SEQ(f, Factor()) ;
}
f
}
def Factor() : Rexp = {
var b = Base();
while (more() && peek() == '*') {
eat('*') ;
b = STAR(b) ;
}
while (more() && peek() == '?') {
eat('?') ;
b = ALT(b, ONE) ;
}
while (more() && peek() == '+') {
eat('+') ;
b = SEQ(b, STAR(b)) ;
}
b
}
def Base() : Rexp = {
peek() match {
case '(' => { eat('(') ; val r = Regex(); eat(')') ; r } // if groups should be groups RECD("",r) }
case _ => CHAR(next())
}
}
}
// two simple examples for the regex parser
println("two simple examples for the regex parser")
println(string(Parser("a|(bc)*").Regex()))
println(string(Parser("(a|b)*(babab(a|b)*bab|bba(a|b)*bab)(a|b)*").Regex()))
//System.exit(0)
// Testing
//============
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
((end - start)/1.0e9).toString
//result
}
def timeR[T](code: => T) = {
val start = System.nanoTime()
for (i <- 1 to 10) code
val result = code
val end = System.nanoTime()
(result, (end - start))
}
//size: of a Aregx for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALTS(rs) => 1 + rs.map(size).sum
case STAR(r) => 1 + size(r)
case RECD(_, r) => size(r)
}
//enumerates strings of length n over alphabet cs
def strs(n: Int, cs: String) : Set[String] = {
if (n == 0) Set("")
else {
val ss = strs(n - 1, cs)
ss ++
(for (s <- ss; c <- cs.toList) yield c + s)
}
}
def enum(n: Int, s: String) : Stream[Rexp] = n match {
case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs #:::
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
(for (r1 <- rs) yield STAR(r1))
}
}
println("Antimirov Example 5.5")
val antimirov = Parser("(a|b)*(babab(a|b)*bab|bba(a|b)*bab)(a|b)*").Regex()
val strings = strs(6, "ab")
val pds = strings.flatMap(s => pders(s.toList, antimirov))
val pds_simplified = pds.map(simp(_)._1)
println("Unsimplified set")
println(pds.map(string).mkString("\n"))
println("Number of pds " + pds.size)
println("\nSimplified set")
println(pds_simplified.map(string).mkString("\n"))
println("Number of pds " + pds_simplified.size)
def fact(n: Int) : Int =
if (n == 0) 1 else n * fact(n - 1)