theory ClosedForms imports
"BasicIdentities"
begin
lemma alts_closed_form: shows
"rsimp (rders_simp (RALTS rs) s) =
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
apply(induct s rule: rev_induct)
apply simp
apply simp
apply(subst rders_simp_append)
apply(subgoal_tac " rsimp (rders_simp (rders_simp (RALTS rs) xs) [x]) =
rsimp(rders_simp (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})) [x])")
prefer 2
apply (metis inside_simp_removal rders_simp_one_char)
apply(simp only: )
sorry
lemma alts_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> rders_simp (RALTS rs) s =
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
sorry
lemma star_closed_form:
shows "rders_simp (RSTAR r0) (c#s) =
rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))"
apply(induct s)
apply simp
sorry
lemma seq_closed_form: shows
"rsimp (rders_simp (RSEQ r1 r2) s) =
rsimp ( RALTS ( (RSEQ (rders_simp r1 s) r2) #
(map (rders_simp r2) (vsuf s r1))
)
)"
apply(induct s)
apply simp
sorry
lemma seq_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> (rders_simp (RSEQ r1 r2) s) =
rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))"
apply(induct s rule: rev_induct)
apply simp
apply(subst rders_simp_append)
apply(subst rders_simp_one_char)
apply(subst rsimp_idem[symmetric])
apply(subst rders_simp_one_char[symmetric])
apply(subst rders_simp_append[symmetric])
apply(insert seq_closed_form)
apply(subgoal_tac "rsimp (rders_simp (RSEQ r1 r2) (xs @ [x]))
= rsimp (RALTS (RSEQ (rders_simp r1 (xs @ [x])) r2 # map (rders_simp r2) (vsuf (xs @ [x]) r1)))")
apply force
by presburger
end