theory SpecExt
imports Main "~~/src/HOL/Library/Sublist"
begin
section {* Sequential Composition of Languages *}
definition
Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
text {* Two Simple Properties about Sequential Composition *}
lemma Sequ_empty_string [simp]:
shows "A ;; {[]} = A"
and "{[]} ;; A = A"
by (simp_all add: Sequ_def)
lemma Sequ_empty [simp]:
shows "A ;; {} = {}"
and "{} ;; A = {}"
by (simp_all add: Sequ_def)
lemma Sequ_assoc:
shows "(A ;; B) ;; C = A ;; (B ;; C)"
apply(auto simp add: Sequ_def)
apply blast
by (metis append_assoc)
lemma Sequ_Union_in:
shows "(A ;; (\<Union>x\<in> B. C x)) = (\<Union>x\<in> B. A ;; C x)"
by (auto simp add: Sequ_def)
section {* Semantic Derivative (Left Quotient) of Languages *}
definition
Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
where
"Der c A \<equiv> {s. c # s \<in> A}"
definition
Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
where
"Ders s A \<equiv> {s'. s @ s' \<in> A}"
lemma Der_null [simp]:
shows "Der c {} = {}"
unfolding Der_def
by auto
lemma Der_empty [simp]:
shows "Der c {[]} = {}"
unfolding Der_def
by auto
lemma Der_char [simp]:
shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto
lemma Der_union [simp]:
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto
lemma Der_UNION [simp]:
shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
by (auto simp add: Der_def)
lemma Der_Sequ [simp]:
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
unfolding Der_def Sequ_def
by (auto simp add: Cons_eq_append_conv)
section {* Kleene Star for Languages *}
inductive_set
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
for A :: "string set"
where
start[intro]: "[] \<in> A\<star>"
| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
(* Arden's lemma *)
lemma Star_cases:
shows "A\<star> = {[]} \<union> A ;; A\<star>"
unfolding Sequ_def
by (auto) (metis Star.simps)
lemma Star_decomp:
assumes "c # x \<in> A\<star>"
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
using assms
by (induct x\<equiv>"c # x" rule: Star.induct)
(auto simp add: append_eq_Cons_conv)
lemma Star_Der_Sequ:
shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
unfolding Der_def Sequ_def
by(auto simp add: Star_decomp)
lemma Der_star [simp]:
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -
have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
by (simp only: Star_cases[symmetric])
also have "... = Der c (A ;; A\<star>)"
by (simp only: Der_union Der_empty) (simp)
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
by simp
also have "... = (Der c A) ;; A\<star>"
using Star_Der_Sequ by auto
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
qed
section {* Power operation for Sets *}
fun
Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
where
"A \<up> 0 = {[]}"
| "A \<up> (Suc n) = A ;; (A \<up> n)"
lemma Pow_empty [simp]:
shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
by(induct n) (auto simp add: Sequ_def)
lemma Pow_Suc_rev:
"A \<up> (Suc n) = (A \<up> n) ;; A"
apply(induct n arbitrary: A)
apply(simp_all)
by (metis Sequ_assoc)
lemma Pow_decomp:
assumes "c # x \<in> A \<up> n"
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A \<up> (n - 1)"
using assms
apply(induct n)
apply(auto simp add: Cons_eq_append_conv Sequ_def)
apply(case_tac n)
apply(auto simp add: Sequ_def)
apply(blast)
done
lemma Star_Pow:
assumes "s \<in> A\<star>"
shows "\<exists>n. s \<in> A \<up> n"
using assms
apply(induct)
apply(auto)
apply(rule_tac x="Suc n" in exI)
apply(auto simp add: Sequ_def)
done
lemma Pow_Star:
assumes "s \<in> A \<up> n"
shows "s \<in> A\<star>"
using assms
apply(induct n arbitrary: s)
apply(auto simp add: Sequ_def)
done
lemma Der_Pow_0:
shows "Der c (A \<up> 0) = {}"
by(simp add: Der_def)
lemma Der_Pow_Suc:
shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n)"
unfolding Der_def Sequ_def
apply(auto simp add: Cons_eq_append_conv Sequ_def dest!: Pow_decomp)
apply(case_tac n)
apply(force simp add: Sequ_def)+
done
lemma Der_Pow [simp]:
shows "Der c (A \<up> n) = (if n = 0 then {} else (Der c A) ;; (A \<up> (n - 1)))"
apply(case_tac n)
apply(simp_all del: Pow.simps add: Der_Pow_0 Der_Pow_Suc)
done
lemma Der_Pow_Sequ [simp]:
shows "Der c (A ;; A \<up> n) = (Der c A) ;; (A \<up> n)"
by (simp only: Pow.simps[symmetric] Der_Pow) (simp)
lemma Pow_Sequ_Un:
assumes "0 < x"
shows "(\<Union>n \<in> {..x}. (A \<up> n)) = ({[]} \<union> (\<Union>n \<in> {..x - Suc 0}. A ;; (A \<up> n)))"
using assms
apply(auto simp add: Sequ_def)
apply(smt Pow.elims Sequ_def Suc_le_mono Suc_pred atMost_iff empty_iff insert_iff mem_Collect_eq)
apply(rule_tac x="Suc xa" in bexI)
apply(auto simp add: Sequ_def)
done
lemma Pow_Sequ_Un2:
assumes "0 < x"
shows "(\<Union>n \<in> {x..}. (A \<up> n)) = (\<Union>n \<in> {x - Suc 0..}. A ;; (A \<up> n))"
using assms
apply(auto simp add: Sequ_def)
apply(case_tac n)
apply(auto simp add: Sequ_def)
apply fastforce
apply(case_tac x)
apply(auto)
apply(rule_tac x="Suc xa" in bexI)
apply(auto simp add: Sequ_def)
done
section {* Regular Expressions *}
datatype rexp =
ZERO
| ONE
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp
| UPNTIMES rexp nat
| NTIMES rexp nat
| FROMNTIMES rexp nat
| NMTIMES rexp nat nat
section {* Semantics of Regular Expressions *}
fun
L :: "rexp \<Rightarrow> string set"
where
"L (ZERO) = {}"
| "L (ONE) = {[]}"
| "L (CHAR c) = {[c]}"
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
| "L (STAR r) = (L r)\<star>"
| "L (UPNTIMES r n) = (\<Union>i\<in> {..n} . (L r) \<up> i)"
| "L (NTIMES r n) = (L r) \<up> n"
| "L (FROMNTIMES r n) = (\<Union>i\<in> {n..} . (L r) \<up> i)"
| "L (NMTIMES r n m) = (\<Union>i\<in>{n..m} . (L r) \<up> i)"
section {* Nullable, Derivatives *}
fun
nullable :: "rexp \<Rightarrow> bool"
where
"nullable (ZERO) = False"
| "nullable (ONE) = True"
| "nullable (CHAR c) = False"
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"
| "nullable (UPNTIMES r n) = True"
| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
| "nullable (FROMNTIMES r n) = (if n = 0 then True else nullable r)"
| "nullable (NMTIMES r n m) = (if m < n then False else (if n = 0 then True else nullable r))"
fun
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
"der c (ZERO) = ZERO"
| "der c (ONE) = ZERO"
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) =
(if nullable r1
then ALT (SEQ (der c r1) r2) (der c r2)
else SEQ (der c r1) r2)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"
| "der c (UPNTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (UPNTIMES r (n - 1)))"
| "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))"
| "der c (FROMNTIMES r n) = SEQ (der c r) (FROMNTIMES r (n - 1))"
| "der c (NMTIMES r n m) =
(if m < n then ZERO
else (if n = 0 then (if m = 0 then ZERO else
SEQ (der c r) (UPNTIMES r (m - 1))) else
SEQ (der c r) (NMTIMES r (n - 1) (m - 1))))"
fun
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
"ders [] r = r"
| "ders (c # s) r = ders s (der c r)"
lemma nullable_correctness:
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
by(induct r) (auto simp add: Sequ_def)
lemma der_correctness:
shows "L (der c r) = Der c (L r)"
apply(induct r)
apply(simp add: nullable_correctness del: Der_UNION)
apply(simp add: nullable_correctness del: Der_UNION)
apply(simp add: nullable_correctness del: Der_UNION)
apply(simp add: nullable_correctness del: Der_UNION)
apply(simp add: nullable_correctness del: Der_UNION)
apply(simp add: nullable_correctness del: Der_UNION)
prefer 2
apply(simp add: nullable_correctness del: Der_UNION)
apply(simp add: nullable_correctness del: Der_UNION)
apply(rule impI)
apply(subst Sequ_Union_in)
apply(subst Der_Pow_Sequ[symmetric])
apply(subst Pow.simps[symmetric])
apply(subst Der_UNION[symmetric])
apply(subst Pow_Sequ_Un)
apply(simp)
apply(simp only: Der_union Der_empty)
apply(simp)
apply(simp add: nullable_correctness del: Der_UNION)
apply(subst Sequ_Union_in)
apply(subst Der_Pow_Sequ[symmetric])
apply(subst Pow.simps[symmetric])
apply(case_tac x2)
prefer 2
apply(subst Pow_Sequ_Un2)
apply(simp)
apply(simp)
apply(auto simp add: Sequ_def Der_def)[1]
apply(rule_tac x="Suc xa" in exI)
apply(auto simp add: Sequ_def)[1]
apply(drule Pow_decomp)
apply(auto)[1]
apply (metis append_Cons)
apply(simp add: nullable_correctness del: Der_UNION)
apply(rule impI)
apply(rule conjI)
apply(rule impI)
apply(subst Sequ_Union_in)
apply(subst Der_Pow_Sequ[symmetric])
apply(subst Pow.simps[symmetric])
apply(subst Der_UNION[symmetric])
apply(case_tac x3a)
apply(simp)
apply(clarify)
apply(auto simp add: Sequ_def Der_def Cons_eq_append_conv)[1]
apply(rule_tac x="Suc xa" in bexI)
apply(auto simp add: Sequ_def)[2]
apply (metis append_Cons)
apply (metis (no_types, hide_lams) Pow_decomp atMost_iff diff_Suc_eq_diff_pred diff_is_0_eq)
apply(rule impI)+
apply(subst Sequ_Union_in)
apply(subst Der_Pow_Sequ[symmetric])
apply(subst Pow.simps[symmetric])
apply(subst Der_UNION[symmetric])
apply(case_tac x2)
apply(simp)
apply(simp del: Pow.simps)
apply(auto simp add: Sequ_def Der_def)
apply (metis One_nat_def Suc_le_D Suc_le_mono atLeastAtMost_iff diff_Suc_1 not_le)
by fastforce
lemma ders_correctness:
shows "L (ders s r) = Ders s (L r)"
by (induct s arbitrary: r)
(simp_all add: Ders_def der_correctness Der_def)
section {* Values *}
datatype val =
Void
| Char char
| Seq val val
| Right val
| Left val
| Stars "val list"
section {* The string behind a value *}
fun
flat :: "val \<Rightarrow> string"
where
"flat (Void) = []"
| "flat (Char c) = [c]"
| "flat (Left v) = flat v"
| "flat (Right v) = flat v"
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
| "flat (Stars []) = []"
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))"
abbreviation
"flats vs \<equiv> concat (map flat vs)"
lemma flat_Stars [simp]:
"flat (Stars vs) = flats vs"
by (induct vs) (auto)
lemma Star_concat:
assumes "\<forall>s \<in> set ss. s \<in> A"
shows "concat ss \<in> A\<star>"
using assms by (induct ss) (auto)
lemma Star_cstring:
assumes "s \<in> A\<star>"
shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
using assms
apply(induct rule: Star.induct)
apply(auto)[1]
apply(rule_tac x="[]" in exI)
apply(simp)
apply(erule exE)
apply(clarify)
apply(case_tac "s1 = []")
apply(rule_tac x="ss" in exI)
apply(simp)
apply(rule_tac x="s1#ss" in exI)
apply(simp)
done
lemma Aux:
assumes "\<forall>s\<in>set ss. s = []"
shows "concat ss = []"
using assms
by (induct ss) (auto)
lemma Pow_cstring_nonempty:
assumes "s \<in> A \<up> n"
shows "\<exists>ss. concat ss = s \<and> length ss \<le> n \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
using assms
apply(induct n arbitrary: s)
apply(auto)
apply(simp add: Sequ_def)
apply(erule exE)+
apply(clarify)
apply(drule_tac x="s2" in meta_spec)
apply(simp)
apply(clarify)
apply(case_tac "s1 = []")
apply(simp)
apply(rule_tac x="ss" in exI)
apply(simp)
apply(rule_tac x="s1 # ss" in exI)
apply(simp)
done
lemma Pow_cstring:
assumes "s \<in> A \<up> n"
shows "\<exists>ss1 ss2. concat (ss1 @ ss2) = s \<and> length (ss1 @ ss2) = n \<and>
(\<forall>s \<in> set ss1. s \<in> A \<and> s \<noteq> []) \<and> (\<forall>s \<in> set ss2. s \<in> A \<and> s = [])"
using assms
apply(induct n arbitrary: s)
apply(auto)[1]
apply(simp only: Pow_Suc_rev)
apply(simp add: Sequ_def)
apply(erule exE)+
apply(clarify)
apply(drule_tac x="s1" in meta_spec)
apply(simp)
apply(erule exE)+
apply(clarify)
apply(case_tac "s2 = []")
apply(simp)
apply(rule_tac x="ss1" in exI)
apply(rule_tac x="s2#ss2" in exI)
apply(simp)
apply(rule_tac x="ss1 @ [s2]" in exI)
apply(rule_tac x="ss2" in exI)
apply(simp)
apply(subst Aux)
apply(auto)[1]
apply(subst Aux)
apply(auto)[1]
apply(simp)
done
section {* Lexical Values *}
inductive
Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
where
"\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
| "\<Turnstile> Void : ONE"
| "\<Turnstile> Char c : CHAR c"
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs \<le> n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : UPNTIMES r n"
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NTIMES r n"
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : FROMNTIMES r n"
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs > n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : FROMNTIMES r n"
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
length (vs1 @ vs2) = n; length (vs1 @ vs2) \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NMTIMES r n m"
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [];
length vs > n; length vs \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : NMTIMES r n m"
inductive_cases Prf_elims:
"\<Turnstile> v : ZERO"
"\<Turnstile> v : SEQ r1 r2"
"\<Turnstile> v : ALT r1 r2"
"\<Turnstile> v : ONE"
"\<Turnstile> v : CHAR c"
"\<Turnstile> vs : STAR r"
"\<Turnstile> vs : UPNTIMES r n"
"\<Turnstile> vs : NTIMES r n"
"\<Turnstile> vs : FROMNTIMES r n"
"\<Turnstile> vs : NMTIMES r n m"
lemma Prf_Stars_appendE:
assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r"
using assms
by (auto intro: Prf.intros elim!: Prf_elims)
lemma flats_empty:
assumes "(\<forall>v\<in>set vs. flat v = [])"
shows "flats vs = []"
using assms
by(induct vs) (simp_all)
lemma Star_cval:
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
using assms
apply(induct ss)
apply(auto)
apply(rule_tac x="[]" in exI)
apply(simp)
apply(case_tac "flat v = []")
apply(rule_tac x="vs" in exI)
apply(simp)
apply(rule_tac x="v#vs" in exI)
apply(simp)
done
lemma flats_cval:
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
shows "\<exists>vs1 vs2. flats (vs1 @ vs2) = concat ss \<and> length (vs1 @ vs2) = length ss \<and>
(\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []) \<and>
(\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = [])"
using assms
apply(induct ss rule: rev_induct)
apply(rule_tac x="[]" in exI)+
apply(simp)
apply(simp)
apply(clarify)
apply(case_tac "flat v = []")
apply(rule_tac x="vs1" in exI)
apply(rule_tac x="v#vs2" in exI)
apply(simp)
apply(rule_tac x="vs1 @ [v]" in exI)
apply(rule_tac x="vs2" in exI)
apply(simp)
apply(subst (asm) (2) flats_empty)
apply(simp)
apply(simp)
done
lemma flats_cval_nonempty:
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
shows "\<exists>vs. flats vs = concat ss \<and> length vs \<le> length ss \<and>
(\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
using assms
apply(induct ss)
apply(rule_tac x="[]" in exI)
apply(simp)
apply(simp)
apply(clarify)
apply(case_tac "flat v = []")
apply(rule_tac x="vs" in exI)
apply(simp)
apply(rule_tac x="v # vs" in exI)
apply(simp)
done
lemma Pow_flats:
assumes "\<forall>v \<in> set vs. flat v \<in> A"
shows "flats vs \<in> A \<up> length vs"
using assms
by(induct vs)(auto simp add: Sequ_def)
lemma Pow_flats_appends:
assumes "\<forall>v \<in> set vs1. flat v \<in> A" "\<forall>v \<in> set vs2. flat v \<in> A"
shows "flats vs1 @ flats vs2 \<in> A \<up> (length vs1 + length vs2)"
using assms
apply(induct vs1)
apply(auto simp add: Sequ_def Pow_flats)
done
lemma L_flat_Prf1:
assumes "\<Turnstile> v : r"
shows "flat v \<in> L r"
using assms
apply(induct)
apply(auto simp add: Sequ_def Star_concat Pow_flats)
apply(meson Pow_flats atMost_iff)
using Pow_flats_appends apply blast
using Pow_flats_appends apply blast
apply (meson Pow_flats atLeast_iff less_imp_le)
apply(rule_tac x="length vs1 + length vs2" in bexI)
apply(meson Pow_flats_appends atLeastAtMost_iff)
apply(simp)
apply(meson Pow_flats atLeastAtMost_iff less_or_eq_imp_le)
done
lemma L_flat_Prf2:
assumes "s \<in> L r"
shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
using assms
proof(induct r arbitrary: s)
case (STAR r s)
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
have "s \<in> L (STAR r)" by fact
then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
using Star_cstring by auto
then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
using IH Star_cval by metis
then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
using Prf.intros(6) flat_Stars by blast
next
case (SEQ r1 r2 s)
then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
next
case (ALT r1 r2 s)
then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s"
unfolding L.simps by (fastforce intro: Prf.intros)
next
case (NTIMES r n)
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
have "s \<in> L (NTIMES r n)" by fact
then obtain ss1 ss2 where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = n"
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
using Pow_cstring by force
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = n"
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
using IH flats_cval
apply -
apply(drule_tac x="ss1 @ ss2" in meta_spec)
apply(drule_tac x="r" in meta_spec)
apply(drule meta_mp)
apply(simp)
apply (metis Un_iff)
apply(clarify)
apply(drule_tac x="vs1" in meta_spec)
apply(drule_tac x="vs2" in meta_spec)
apply(simp)
done
then show "\<exists>v. \<Turnstile> v : NTIMES r n \<and> flat v = s"
using Prf.intros(8) flat_Stars by blast
next
case (FROMNTIMES r n)
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
have "s \<in> L (FROMNTIMES r n)" by fact
then obtain ss1 ss2 m where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = m" "n \<le> m"
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
using Pow_cstring by force
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = m" "n \<le> m"
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
using IH flats_cval
apply -
apply(drule_tac x="ss1 @ ss2" in meta_spec)
apply(drule_tac x="r" in meta_spec)
apply(drule meta_mp)
apply(simp)
apply (metis Un_iff)
apply(clarify)
apply(drule_tac x="vs1" in meta_spec)
apply(drule_tac x="vs2" in meta_spec)
apply(simp)
done
then show "\<exists>v. \<Turnstile> v : FROMNTIMES r n \<and> flat v = s"
apply(case_tac "length vs1 \<le> n")
apply(rule_tac x="Stars (vs1 @ take (n - length vs1) vs2)" in exI)
apply(simp)
apply(subgoal_tac "flats (take (n - length vs1) vs2) = []")
prefer 2
apply (meson flats_empty in_set_takeD)
apply(clarify)
apply(rule conjI)
apply(rule Prf.intros)
apply(simp)
apply (meson in_set_takeD)
apply(simp)
apply(simp)
apply (simp add: flats_empty)
apply(rule_tac x="Stars vs1" in exI)
apply(simp)
apply(rule conjI)
apply(rule Prf.intros(10))
apply(auto)
done
next
case (NMTIMES r n m)
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
have "s \<in> L (NMTIMES r n m)" by fact
then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k" "k \<le> m"
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
using Pow_cstring by (auto, blast)
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k" "k \<le> m"
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
using IH flats_cval
apply -
apply(drule_tac x="ss1 @ ss2" in meta_spec)
apply(drule_tac x="r" in meta_spec)
apply(drule meta_mp)
apply(simp)
apply (metis Un_iff)
apply(clarify)
apply(drule_tac x="vs1" in meta_spec)
apply(drule_tac x="vs2" in meta_spec)
apply(simp)
done
then show "\<exists>v. \<Turnstile> v : NMTIMES r n m \<and> flat v = s"
apply(rule_tac x="Stars (vs1 @ vs2)" in exI)
apply(simp)
apply(rule Prf.intros)
apply(auto)
sorry
next
case (UPNTIMES r n s)
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
have "s \<in> L (UPNTIMES r n)" by fact
then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []" "length ss \<le> n"
using Pow_cstring_nonempty by force
then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []" "length vs \<le> n"
using IH flats_cval_nonempty by (smt order.trans)
then show "\<exists>v. \<Turnstile> v : UPNTIMES r n \<and> flat v = s"
using Prf.intros(7) flat_Stars by blast
qed (auto intro: Prf.intros)
lemma L_flat_Prf:
shows "L(r) = {flat v | v. \<Turnstile> v : r}"
using L_flat_Prf1 L_flat_Prf2 by blast
section {* Sets of Lexical Values *}
text {*
Shows that lexical values are finite for a given regex and string.
*}
definition
LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
where "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
lemma LV_simps:
shows "LV ZERO s = {}"
and "LV ONE s = (if s = [] then {Void} else {})"
and "LV (CHAR c) s = (if s = [c] then {Char c} else {})"
and "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s"
unfolding LV_def
apply(auto intro: Prf.intros elim: Prf.cases)
done
abbreviation
"Prefixes s \<equiv> {s'. prefix s' s}"
abbreviation
"Suffixes s \<equiv> {s'. suffix s' s}"
abbreviation
"SSuffixes s \<equiv> {s'. strict_suffix s' s}"
lemma Suffixes_cons [simp]:
shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
by (auto simp add: suffix_def Cons_eq_append_conv)
lemma finite_Suffixes:
shows "finite (Suffixes s)"
by (induct s) (simp_all)
lemma finite_SSuffixes:
shows "finite (SSuffixes s)"
proof -
have "SSuffixes s \<subseteq> Suffixes s"
unfolding suffix_def strict_suffix_def by auto
then show "finite (SSuffixes s)"
using finite_Suffixes finite_subset by blast
qed
lemma finite_Prefixes:
shows "finite (Prefixes s)"
proof -
have "finite (Suffixes (rev s))"
by (rule finite_Suffixes)
then have "finite (rev ` Suffixes (rev s))" by simp
moreover
have "rev ` (Suffixes (rev s)) = Prefixes s"
unfolding suffix_def prefix_def image_def
by (auto)(metis rev_append rev_rev_ident)+
ultimately show "finite (Prefixes s)" by simp
qed
lemma LV_STAR_finite:
assumes "\<forall>s. finite (LV r s)"
shows "finite (LV (STAR r) s)"
proof(induct s rule: length_induct)
fix s::"char list"
assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
by (auto simp add: strict_suffix_def)
define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. Stars -` (LV (STAR r) s2)"
have "finite S1" using assms
unfolding S1_def by (simp_all add: finite_Prefixes)
moreover
with IH have "finite S2" unfolding S2_def
by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
ultimately
have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
moreover
have "LV (STAR r) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)"
unfolding S1_def S2_def f_def
unfolding LV_def image_def prefix_def strict_suffix_def
apply(auto)
apply(case_tac x)
apply(auto elim: Prf_elims)
apply(erule Prf_elims)
apply(auto)
apply(case_tac vs)
apply(auto intro: Prf.intros)
apply(rule exI)
apply(rule conjI)
apply(rule_tac x="flat a" in exI)
apply(rule conjI)
apply(rule_tac x="flats list" in exI)
apply(simp)
apply(blast)
using Prf.intros(6) by blast
ultimately
show "finite (LV (STAR r) s)" by (simp add: finite_subset)
qed
lemma LV_UPNTIMES_STAR:
"LV (UPNTIMES r n) s \<subseteq> LV (STAR r) s"
by(auto simp add: LV_def intro: Prf.intros elim: Prf_elims)
lemma LV_NTIMES_0:
shows "LV (NTIMES r 0) s \<subseteq> {Stars []}"
unfolding LV_def
apply(auto elim: Prf_elims)
done
lemma LV_NTIMES_1:
shows "LV (NTIMES r 1) s \<subseteq> (\<lambda>v. Stars [v]) ` (LV r s)"
unfolding LV_def
apply(auto elim!: Prf_elims)
apply(case_tac vs1)
apply(simp)
apply(case_tac vs2)
apply(simp)
apply(simp)
apply(simp)
done
lemma LV_NTIMES_2:
shows "LV (NTIMES r 2) [] \<subseteq> (\<lambda>(v1,v2). Stars [v1,v2]) ` (LV r [] \<times> LV r [])"
unfolding LV_def
apply(auto elim!: Prf_elims simp add: image_def)
apply(case_tac vs1)
apply(auto)
apply(case_tac vs2)
apply(auto)
apply(case_tac list)
apply(auto)
done
lemma LV_NTIMES_3:
shows "LV (NTIMES r (Suc n)) [] = (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (NTIMES r n) [])))"
unfolding LV_def
apply(auto elim!: Prf_elims simp add: image_def)
apply(case_tac vs1)
apply(auto)
apply(case_tac vs2)
apply(auto)
apply(subst append.simps(1)[symmetric])
apply(rule Prf.intros)
apply(auto)
apply(subst append.simps(1)[symmetric])
apply(rule Prf.intros)
apply(auto)
done
thm card_cartesian_product
lemma finite_list:
assumes "finite A"
shows "finite {vs. \<forall>v\<in>set vs. v \<in> A \<and> length vs = n}"
apply(induct n)
apply(simp)
apply (smt Collect_cong empty_iff finite.emptyI finite.insertI
in_listsI list.set(1) lists_empty mem_Collect_eq singleton_conv2)
apply(rule_tac B="{[]} \<union> (\<lambda>(v,vs). v # vs) `(A \<times> {vs. \<forall>v\<in>set vs. v \<in> A \<and> length vs = n})" in finite_subset)
apply(auto simp add: image_def)[1]
apply(case_tac x)
apply(simp)
apply(simp)
apply(simp)
apply(rule finite_imageI)
using assms
apply(simp)
done
lemma test:
"LV (NTIMES r n) [] \<subseteq> Stars ` {vs. \<forall>v \<in> set vs. v \<in> LV r [] \<and> length vs = n}"
apply(auto simp add: LV_def elim: Prf_elims)
done
lemma test3:
"LV (FROMNTIMES r n) [] \<subseteq> Stars ` {vs. \<forall>v \<in> set vs. v \<in> LV r [] \<and> length vs = n}"
apply(auto simp add: image_def LV_def elim!: Prf_elims)
apply blast
apply(case_tac vs)
apply(auto)
done
lemma LV_NTIMES_empty_finite:
assumes "finite (LV r [])"
shows "finite (LV (NTIMES r n) [])"
using assms
apply -
apply(rule finite_subset)
apply(rule test)
apply(rule finite_imageI)
apply(rule finite_list)
apply(simp)
done
lemma LV_NTIMES_STAR:
"LV (NTIMES r n) s \<subseteq> LV (STAR r) s"
apply(auto simp add: LV_def intro: Prf.intros elim!: Prf_elims)
apply(rule Prf.intros)
oops
lemma LV_FROMNTIMES_STAR:
"LV (FROMNTIMES r n) s \<subseteq> LV (STAR r) s"
apply(auto simp add: LV_def intro: Prf.intros elim!: Prf_elims)
oops
lemma LV_finite:
shows "finite (LV r s)"
proof(induct r arbitrary: s)
case (ZERO s)
show "finite (LV ZERO s)" by (simp add: LV_simps)
next
case (ONE s)
show "finite (LV ONE s)" by (simp add: LV_simps)
next
case (CHAR c s)
show "finite (LV (CHAR c) s)" by (simp add: LV_simps)
next
case (ALT r1 r2 s)
then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps)
next
case (SEQ r1 r2 s)
define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
then have "finite S1" "finite S2" unfolding S1_def S2_def
by (simp_all add: finite_Prefixes finite_Suffixes)
moreover
have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
unfolding f_def S1_def S2_def
unfolding LV_def image_def prefix_def suffix_def
apply (auto elim!: Prf_elims)
by (metis (mono_tags, lifting) mem_Collect_eq)
ultimately
show "finite (LV (SEQ r1 r2) s)"
by (simp add: finite_subset)
next
case (STAR r s)
then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
next
case (UPNTIMES r n s)
have "\<And>s. finite (LV r s)" by fact
then show "finite (LV (UPNTIMES r n) s)"
by (meson LV_STAR_finite LV_UPNTIMES_STAR rev_finite_subset)
next
case (FROMNTIMES r n s)
have "\<And>s. finite (LV r s)" by fact
then show "finite (LV (FROMNTIMES r n) s)"
qed
section {* Our POSIX Definition *}
inductive
Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
where
Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow>
(s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
\<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
inductive_cases Posix_elims:
"s \<in> ZERO \<rightarrow> v"
"s \<in> ONE \<rightarrow> v"
"s \<in> CHAR c \<rightarrow> v"
"s \<in> ALT r1 r2 \<rightarrow> v"
"s \<in> SEQ r1 r2 \<rightarrow> v"
"s \<in> STAR r \<rightarrow> v"
lemma Posix1:
assumes "s \<in> r \<rightarrow> v"
shows "s \<in> L r" "flat v = s"
using assms
by (induct s r v rule: Posix.induct)
(auto simp add: Sequ_def)
text {*
Our Posix definition determines a unique value.
*}
lemma Posix_determ:
assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
shows "v1 = v2"
using assms
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
case (Posix_ONE v2)
have "[] \<in> ONE \<rightarrow> v2" by fact
then show "Void = v2" by cases auto
next
case (Posix_CHAR c v2)
have "[c] \<in> CHAR c \<rightarrow> v2" by fact
then show "Char c = v2" by cases auto
next
case (Posix_ALT1 s r1 v r2 v2)
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
moreover
have "s \<in> r1 \<rightarrow> v" by fact
then have "s \<in> L r1" by (simp add: Posix1)
ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto
moreover
have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
ultimately have "v = v'" by simp
then show "Left v = v2" using eq by simp
next
case (Posix_ALT2 s r2 v r1 v2)
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
moreover
have "s \<notin> L r1" by fact
ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'"
by cases (auto simp add: Posix1)
moreover
have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
ultimately have "v = v'" by simp
then show "Right v = v2" using eq by simp
next
case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'"
"s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
apply(cases) apply (auto simp add: append_eq_append_conv2)
using Posix1(1) by fastforce+
moreover
have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
"\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
ultimately show "Seq v1 v2 = v'" by simp
next
case (Posix_STAR1 s1 r v s2 vs v2)
have "(s1 @ s2) \<in> STAR r \<rightarrow> v2"
"s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
apply(cases) apply (auto simp add: append_eq_append_conv2)
using Posix1(1) apply fastforce
apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
using Posix1(2) by blast
moreover
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
"\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
ultimately show "Stars (v # vs) = v2" by auto
next
case (Posix_STAR2 r v2)
have "[] \<in> STAR r \<rightarrow> v2" by fact
then show "Stars [] = v2" by cases (auto simp add: Posix1)
qed
text {*
Our POSIX value is a lexical value.
*}
lemma Posix_LV:
assumes "s \<in> r \<rightarrow> v"
shows "v \<in> LV r s"
using assms unfolding LV_def
apply(induct rule: Posix.induct)
apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)
done
end