theory ClosedForms imports
"BasicIdentities"
begin
lemma add0_isomorphic:
shows "rsimp_ALTs (rdistinct (rflts [rsimp r, RZERO]) {}) = rsimp r"
sorry
lemma distinct_append_simp:
shows " rsimp (rsimp_ALTs rs1) = rsimp (rsimp_ALTs rs2) \<Longrightarrow>
rsimp (rsimp_ALTs (f a # rs1)) =
rsimp (rsimp_ALTs (f a # rs2))"
apply(case_tac rs1)
apply simp
apply(case_tac rs2)
apply simp
apply simp
prefer 2
apply(case_tac list)
apply(case_tac rs2)
apply simp
using add0_isomorphic apply blast
apply simp
sorry
(* apply (smt (z3) append.right_neutral empty_iff list.distinct(1) list.inject no_alt_short_list_after_simp no_further_dB_after_simp rdistinct.elims rflts.elims rflts.simps(2) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2)))*)
lemma simp_rdistinct_f: shows
"f ` rset = frset \<Longrightarrow> rsimp (rsimp_ALTs (map f (rdistinct rs rset))) = rsimp (rsimp_ALTs (rdistinct (map f rs) frset)) "
apply(induct rs arbitrary: rset)
apply simp
apply(case_tac "a \<in> rset")
apply(case_tac " f a \<in> frset")
apply simp
apply blast
apply(subgoal_tac "f a \<notin> frset")
apply(simp)
apply(subgoal_tac "f ` (insert a rset) = insert (f a) frset")
prefer 2
apply (meson image_insert)
oops
lemma spawn_simp_rsimpalts:
shows "rsimp (rsimp_ALTs rs) = rsimp (rsimp_ALTs (map rsimp rs))"
apply(cases rs)
apply simp
apply(case_tac list)
apply simp
apply(subst rsimp_idem[symmetric])
apply simp
apply(subgoal_tac "rsimp_ALTs rs = RALTS rs")
apply(simp only:)
apply(subgoal_tac "rsimp_ALTs (map rsimp rs) = RALTS (map rsimp rs)")
apply(simp only:)
prefer 2
apply simp
prefer 2
using rsimp_ALTs.simps(3) apply presburger
apply auto
apply(subst rsimp_idem)+
by (metis comp_apply rsimp_idem)
lemma spawn_simp_distinct:
shows "rsimp (rsimp_ALTs (rsa @ (rdistinct rs (set rsa)))) = rsimp (rsimp_ALTs (rsa @ rs))
\<and> (a1 \<in> set rsa1 \<longrightarrow> rsimp (rsimp_ALTs (rsa1 @ rs)) = rsimp (rsimp_ALTs (rsa1 @ a1 # rs)))
\<and> rsimp (rsimp_ALTs (rsc @ rs)) = rsimp (rsimp_ALTs (rsc @ (rdistinct rs (set rsc))))"
apply(induct rs arbitrary: rsa rsa1 a1 rsc)
apply simp
apply(subgoal_tac "rsimp (rsimp_ALTs (rsa1 @ [a1])) = rsimp (rsimp_ALTs (rsa1 @ (rdistinct [a1] (set rsa1))))")
prefer 2
oops
lemma inv_one_derx:
shows " RONE = rder xa r2 \<Longrightarrow> r2 = RCHAR xa"
apply(case_tac r2)
apply simp+
using rrexp.distinct(1) apply presburger
apply (metis rder.simps(5) rrexp.distinct(13) rrexp.simps(20))
apply simp+
done
lemma shape_of_derseq:
shows "rder x (RSEQ r1 r2) = RSEQ (rder x r1) r2 \<or> rder x (RSEQ r1 r2) = (RALT (RSEQ (rder x r1) r2) (rder x r2))"
using rder.simps(5) by presburger
lemma shape_of_derseq2:
shows "rder x (RSEQ r11 r12) = RSEQ x41 x42 \<Longrightarrow> x41 = rder x r11"
by (metis rrexp.distinct(25) rrexp.inject(2) shape_of_derseq)
lemma alts_preimage_case1:
shows "rder x r = RALTS [r] \<Longrightarrow> \<exists>ra. r = RALTS [ra]"
apply(case_tac r)
apply simp+
apply (metis rrexp.simps(12) rrexp.simps(20))
apply (metis rrexp.inject(3) rrexp.simps(30) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3) shape_of_derseq)
apply auto[1]
by auto
lemma alts_preimage_case2:
shows "rder x r = RALT r1 r2 \<Longrightarrow> \<exists>ra rb. (r = RSEQ ra rb \<or> r = RALT ra rb)"
apply(case_tac r)
apply simp+
apply (metis rrexp.distinct(15) rrexp.distinct(7))
apply simp
apply auto[1]
by auto
lemma alts_preimage_case2_2:
shows "rder x r = RALT r1 r2 \<Longrightarrow> (\<exists>ra rb. r = RSEQ ra rb) \<or> (\<exists>rc rd. r = RALT rc rd)"
using alts_preimage_case2 by blast
lemma alts_preimage_case3:
shows "rder x r = RALT r1 r2 \<Longrightarrow> (\<exists>ra rb. r = RSEQ ra rb) \<or> (\<exists>rcs rc rd. r = RALTS rcs \<and> rcs = [rc, rd])"
using alts_preimage_case2 by blast
lemma star_seq:
shows "rder x (RSEQ (RSTAR a) b) = RALT (RSEQ (RSEQ (rder x a) (RSTAR a)) b) (rder x b)"
using rder.simps(5) rder.simps(6) rnullable.simps(6) by presburger
lemma language_equality_id1:
shows "\<not>rnullable a \<Longrightarrow> rder x (RSEQ (RSTAR a) b) = rder x (RALT (RSEQ (RSEQ a (RSTAR a)) b) b)"
apply (subst star_seq)
apply simp
done
lemma alts_preimage_cases:
shows "rder x r = RALT (RSEQ r1 r2) r3 \<Longrightarrow> (\<exists>ra rb. r = RSEQ ra rb) \<or> (\<exists>rc rd re. r = RALT (RSEQ rc rd) re)"
apply(case_tac r)
apply simp+
apply (metis rrexp.simps(12) rrexp.simps(20))
prefer 3
apply simp
apply blast
apply(frule alts_preimage_case2_2)
apply(case_tac "(\<exists>ra rb. r = RSEQ ra rb)")
apply blast
apply(subgoal_tac " (\<exists> rc rd. r = RALT rc rd )")
prefer 2
apply blast
apply(erule exE)+
apply(subgoal_tac "rder x r = RALT (rder x rc) (rder x rd)")
prefer 2
apply force
apply(subgoal_tac "rder x rc = RSEQ r1 r2")
oops
lemma der_seq_eq_case:
shows "\<lbrakk>r1 \<noteq> r2 ; r1 = RSEQ ra rb; rder x r1 = rder x r2\<rbrakk> \<Longrightarrow> rsimp (rder x r1) = RZERO \<and> rsimp (rder x r2) = RZERO"
apply(case_tac "rnullable ra")
apply simp
oops
lemma der_map_unequal_to_equal_zero_only:
shows "\<lbrakk>r1 \<noteq> r2 ; rder x r1 = rder x r2 \<rbrakk> \<Longrightarrow> rsimp (rder x r1) = RZERO"
apply(induct r1)
apply simp
apply simp
apply simp
apply(case_tac "x = xa")
apply simp
apply(subgoal_tac "r2 = RCHAR xa")
prefer 2
using inv_one_derx apply blast
apply simp
using rsimp.simps(3) apply presburger
apply(case_tac "rder x (RSEQ r11 r12)")
apply simp
apply (metis inv_one_derx)
apply (metis rrexp.distinct(21) rrexp.simps(24) shape_of_derseq)
apply(subgoal_tac "rder x r2 = RSEQ x41 x42")
prefer 2
apply presburger
apply(subgoal_tac "x41 = rder x r11")
prefer 2
apply (meson shape_of_derseq2)
apply(case_tac r2)
apply simp+
apply (metis rrexp.distinct(13) rrexp.simps(10))
apply(subgoal_tac "x42a = x42")
prefer 2
apply (metis rrexp.inject(2) rrexp.simps(30) shape_of_derseq)
apply(subgoal_tac "rder x x41a = x41")
prefer 2
apply (metis shape_of_derseq2)
apply(simp)
apply(subgoal_tac "\<not> rnullable r11")
prefer 2
apply force
apply simp
apply(subgoal_tac "\<not> rnullable x41a")
prefer 2
apply force
apply simp
oops
lemma der_maps_1to1_except0:
shows "\<lbrakk>rder x ` rset = dset; a \<notin> rset; rder x a \<in> dset\<rbrakk> \<Longrightarrow> rsimp (rder x a) = RZERO"
sorry
lemma distinct_der_set:
shows "(rder x) ` rset = dset \<Longrightarrow>
rsimp (rsimp_ALTs (map (rder x) (rdistinct rs rset))) = rsimp ( rsimp_ALTs (rdistinct (map (rder x) rs) dset))"
apply(induct rs arbitrary: rset dset)
apply simp
apply(case_tac "a \<in> rset")
apply(subgoal_tac "rder x a \<in> dset")
prefer 2
apply blast
apply simp
apply(case_tac "rder x a \<notin> dset")
prefer 2
apply simp
oops
lemma map_concat_cons:
shows "map f rsa @ f a # rs = map f (rsa @ [a]) @ rs"
by simp
lemma neg_removal_element_of:
shows " \<not> a \<notin> aset \<Longrightarrow> a \<in> aset"
by simp
lemma simp_more_flts:
shows "rsimp (rsimp_ALTs (rdistinct rs {})) = rsimp (rsimp_ALTs (rdistinct (rflts rs) {}))"
oops
lemma simp_more_distinct:
shows "rsimp (rsimp_ALTs (rsa @ rs)) = rsimp (rsimp_ALTs (rsa @ (rdistinct rs (set rsa)))) \<and>
rsimp (rsimp_ALTs (rsb @ (rdistinct rs (set rsb)))) =
rsimp (rsimp_ALTs (rsb @ (rdistinct (rflts rs) (set rsb))))"
apply(induct rs arbitrary: rsa rsb)
apply simp
sorry
lemma non_empty_list:
shows "a \<in> set as \<Longrightarrow> as \<noteq> []"
by (metis empty_iff empty_set)
lemma distinct_removes_last:
shows "\<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as)\<rbrakk>
\<Longrightarrow> rsimp_ALTs (rdistinct (rflts (map rsimp as @ [rsimp a])) {}) =
rsimp_ALTs (rdistinct (rflts (map rsimp as)) {})"
apply(induct "rsimp a" arbitrary: as)
apply(simp)
apply (metis append.right_neutral append_self_conv2 empty_set list.simps(9) map_append rflts.simps(2) rsimp.simps(2) rsimp_idem simp_more_distinct spawn_simp_rsimpalts)
apply simp
sorry
lemma flts_identity1:
shows "rflts (rs @ [RONE]) = rflts rs @ [RONE] "
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp
apply simp+
done
lemma flts_identity10:
shows " rflts (rs @ [RCHAR c]) = rflts rs @ [RCHAR c]"
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp+
done
lemma flts_identity11:
shows " rflts (rs @ [RSEQ r1 r2]) = rflts rs @ [RSEQ r1 r2]"
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp+
done
lemma flts_identity12:
shows " rflts (rs @ [RSTAR r0]) = rflts rs @ [RSTAR r0]"
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp+
done
lemma flts_identity2:
shows "a \<noteq> RZERO \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow> rflts (rs @ [a]) = rflts rs @ [a]"
apply(case_tac a)
apply simp
using flts_identity1 apply auto[1]
using flts_identity10 apply blast
using flts_identity11 apply auto[1]
apply blast
using flts_identity12 by presburger
lemma last_elem_dup1:
shows " a \<in> set as \<Longrightarrow> rsimp (RALTS (as @ [a] )) = rsimp (RALTS (as ))"
apply simp
apply(subgoal_tac "rsimp a \<in> set (map rsimp as)")
prefer 2
apply simp
sorry
lemma last_elem_dup:
shows " a \<in> set as \<Longrightarrow> rsimp (rsimp_ALTs (as @ [a] )) = rsimp (rsimp_ALTs (as ))"
apply(induct as rule: rev_induct)
apply simp
apply simp
apply(subgoal_tac "xs \<noteq> []")
prefer 2
sorry
lemma appeared_before_remove_later:
shows "a \<in> set as \<Longrightarrow> rsimp (rsimp_ALTs ( as @ a # rs)) = rsimp (rsimp_ALTs (as @ rs))"
and "a \<in> set as \<Longrightarrow> rsimp (rsimp_ALTs as ) = rsimp (rsimp_ALTs (as @ [a]))"
apply(induct rs arbitrary: as)
apply simp
sorry
lemma distinct_remove_later:
shows "\<lbrakk>rder x a \<in> rder x ` set rsa\<rbrakk>
\<Longrightarrow> rsimp (rsimp_ALTs (map (rder x) rsa @ rder x a # map (rder x) (rdistinct rs (insert a (set rsa))))) =
rsimp (rsimp_ALTs (map (rder x) rsa @ map (rder x) (rdistinct rs (set rsa))))"
sorry
lemma distinct_der_general:
shows "rsimp (rsimp_ALTs (map (rder x) (rsa @ (rdistinct rs (set rsa))))) =
rsimp ( rsimp_ALTs ((map (rder x) rsa)@(rdistinct (map (rder x) rs) (set (map (rder x) rsa)))) )"
apply(induct rs arbitrary: rsa)
apply simp
apply(case_tac "a \<in> set rsa")
apply(subgoal_tac "rder x a \<in> set (map (rder x) rsa)")
apply simp
apply simp
apply(case_tac "rder x a \<notin> set (map (rder x) rsa)")
apply(simp)
apply(subst map_concat_cons)+
apply(drule_tac x = "rsa @ [a]" in meta_spec)
apply simp
apply(drule neg_removal_element_of)
apply simp
apply(subst distinct_remove_later)
apply simp
apply(drule_tac x = "rsa" in meta_spec)
by blast
lemma distinct_der:
shows "rsimp (rsimp_ALTs (map (rder x) (rdistinct rs {}))) = rsimp ( rsimp_ALTs (rdistinct (map (rder x) rs) {}))"
by (metis distinct_der_general list.simps(8) self_append_conv2 set_empty)
lemma rders_simp_lambda:
shows " rsimp \<circ> rder x \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r (xs @ [x]))"
using rders_simp_append by auto
lemma rders_simp_nonempty_simped:
shows "xs \<noteq> [] \<Longrightarrow> rsimp \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r xs)"
using rders_simp_same_simpders rsimp_idem by auto
lemma repeated_altssimp:
shows "\<forall>r \<in> set rs. rsimp r = r \<Longrightarrow> rsimp (rsimp_ALTs (rdistinct (rflts rs) {})) =
rsimp_ALTs (rdistinct (rflts rs) {})"
by (metis map_idI rsimp.simps(2) rsimp_idem)
lemma alts_closed_form: shows
"rsimp (rders_simp (RALTS rs) s) =
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
apply(induct s rule: rev_induct)
apply simp
apply simp
apply(subst rders_simp_append)
apply(subgoal_tac " rsimp (rders_simp (rders_simp (RALTS rs) xs) [x]) =
rsimp(rders_simp (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})) [x])")
prefer 2
apply (metis inside_simp_removal rders_simp_one_char)
apply(simp only: )
apply(subst rders_simp_one_char)
apply(subst rsimp_idem)
apply(subgoal_tac "rsimp (rder x (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {}))) =
rsimp ((rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))) ")
prefer 2
using rder_rsimp_ALTs_commute apply presburger
apply(simp only:)
apply(subgoal_tac "rsimp (rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))
= rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
prefer 2
using distinct_der apply presburger
apply(simp only:)
apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
rsimp (rsimp_ALTs (rdistinct ( (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)))) {}))")
apply(simp only:)
apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
rsimp (rsimp_ALTs (rdistinct (rflts ( (map (rsimp \<circ> (rder x) \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
apply(simp only:)
apply(subst rders_simp_lambda)
apply(subst rders_simp_nonempty_simped)
apply simp
apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (xs @ [x])) rs). rsimp r = r")
prefer 2
apply (simp add: rders_simp_same_simpders rsimp_idem)
apply(subst repeated_altssimp)
apply simp
apply fastforce
apply (metis inside_simp_removal list.map_comp rder.simps(4) rsimp.simps(2) rsimp_idem)
(* apply (metis head_one_more_simp list.inject list.map_comp list.simps(9) rders_simp_lambda rsimp.simps(2))
*)
sorry
lemma alts_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> rders_simp (RALTS rs) s =
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
sorry
lemma star_closed_form:
shows "rders_simp (RSTAR r0) (c#s) =
rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))"
apply(induct s)
apply simp
sorry
lemma seq_closed_form: shows
"rsimp (rders_simp (RSEQ r1 r2) s) =
rsimp ( RALTS ( (RSEQ (rders_simp r1 s) r2) #
(map (rders_simp r2) (vsuf s r1))
)
)"
apply(induct s)
apply simp
sorry
lemma seq_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> (rders_simp (RSEQ r1 r2) s) =
rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))"
apply(induct s rule: rev_induct)
apply simp
apply(subst rders_simp_append)
apply(subst rders_simp_one_char)
apply(subst rsimp_idem[symmetric])
apply(subst rders_simp_one_char[symmetric])
apply(subst rders_simp_append[symmetric])
apply(insert seq_closed_form)
apply(subgoal_tac "rsimp (rders_simp (RSEQ r1 r2) (xs @ [x]))
= rsimp (RALTS (RSEQ (rders_simp r1 (xs @ [x])) r2 # map (rders_simp r2) (vsuf (xs @ [x]) r1)))")
apply force
by presburger
end