thys2/Paper/document/root.tex
author Christian Urban <christian.urban@kcl.ac.uk>
Tue, 25 Jan 2022 13:12:50 +0000
changeset 396 cc8e231529fb
child 397 e1b74d618f1b
permissions -rwxr-xr-x
added ITP paper

\documentclass[runningheads]{lipics-v2021}
\usepackage{times}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathpartir}
\usepackage{tikz}
\usepackage{pgf}
\usetikzlibrary{positioning}
%\usepackage{pdfsetup}
%\usepackage{stmaryrd}
%\usepackage{url}
%\usepackage{color}
%\usepackage[safe]{tipa}
%\usepackage[sc]{mathpazo}
%\usepackage{fontspec}
%\setmainfont[Ligatures=TeX]{Palatino Linotype}




\urlstyle{rm}
\isabellestyle{it}
\renewcommand{\isastyleminor}{\it}% 
\renewcommand{\isastyle}{\normalsize\it}%


\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
\renewcommand{\isasymequiv}{$\dn$}
\renewcommand{\isasymemptyset}{$\varnothing$}
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
\renewcommand{\isasymiota}{\makebox[0mm]{${}^{\prime}$}}
\renewcommand{\isasymin}{\ensuremath{\,\in\,}}


\def\Brz{Brzozowski}
\def\der{\backslash}
\newtheorem{falsehood}{Falsehood}
\newtheorem{conject}{Conjecture}

\bibliographystyle{plainurl}

\title{{POSIX} {L}exing with {B}itcoded {D}erivatives}
\titlerunning{POSIX Lexing with Bitcoded Derivatives}
\author{Chengsong Tan}{King's College London}{chengsong.tan@kcl.ac.uk}{}{}
\author{Christian Urban}{King's College London}{christian.urban@kcl.ac.uk}{}{}


\begin{document}
\maketitle

\begin{abstract}
Brzozowski introduced the notion of derivatives for regular
expressions. They can be used for a very simple regular expression
matching algorithm.  Sulzmann and Lu cleverly extended this algorithm
in order to deal with POSIX matching, which is the underlying
disambiguation strategy for regular expressions needed in lexers.
Their algorithm generates POSIX values which encode the information of
\emph{how} a regular expression matches a string---that is, which part
of the string is matched by which part of the regular expression.  In
this paper we give our inductive definition of what a POSIX value is
and show $(i)$ that such a value is unique (for given regular
expression and string being matched) and $(ii)$ that Sulzmann and Lu's
algorithm always generates such a value (provided that the regular
expression matches the string). We show that $(iii)$ our inductive
definition of a POSIX value is equivalent to an alternative definition
by Okui and Suzuki which identifies POSIX values as least elements
according to an ordering of values.  We also prove the correctness of
Sulzmann's bitcoded version of the POSIX matching algorithm and extend the
results to additional constructors for regular expressions.  \smallskip

{\bf Keywords:} POSIX matching, Derivatives of Regular Expressions,
Isabelle/HOL
\end{abstract}



\input{session}



\end{document}

%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: