Attic/Pr.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 04 May 2016 17:19:39 +0100
changeset 166 cab1ae6f339a
parent 95 a33d3040bf7e
permissions -rw-r--r--
added benchmark from Fahad

theory Pr
imports Main "~~/src/HOL/Number_Theory/Primes" "~~/src/HOL/Real"
begin

fun 
  add :: "nat \<Rightarrow> nat \<Rightarrow> nat" 
where
  "add 0 n = n" |
  "add (Suc m) n = Suc (add m n)"

fun 
  doub :: "nat \<Rightarrow> nat" 
where
  "doub 0 = 0" |
  "doub n = n + n"

lemma add_lem:
  "add m n = m + n"
apply(induct m arbitrary: )
apply(auto)
done

fun 
  count :: "'a \<Rightarrow> 'a list \<Rightarrow> nat"
where
  "count n Nil = 0" |
  "count n (x # xs) = (if n = x then (add 1 (count n xs)) else count n xs)"

value "count 3 [1,2,3,3,4,3,5]"

fun 
  count2 :: "nat \<Rightarrow> nat list \<Rightarrow> nat" 
where
"count2 n Nil = 0" |
"count2 n (Cons x xs) = (if n = x then (add 1 (count2 n xs)) else count2 n xs)"

value "count2 (2::nat) [2,2,3::nat]"

lemma
  "count2 x xs \<le> length xs"
apply(induct xs)
apply(simp)
apply(simp)
apply(auto)
done

fun 
  sum :: "nat \<Rightarrow> nat"
where
  "sum 0 = 0"
| "sum (Suc n) = (Suc n) + sum n"

lemma
  "sum n = (n * (Suc n)) div 2"
apply(induct n)
apply(auto)
done


lemma
  "doub n = add n n"
apply(induct n)
apply(simp)
apply(simp add: add_lem)
done

lemma 
  fixes a b::nat
  shows "(a + b) ^ 2 = a ^ 2 + 2 * a * b + b ^ 2"
apply(simp add: power2_sum)
done

lemma
  fixes a b c::"real"
  assumes eq: "a * c \<le> b * c" and ineq: "b < a"
  shows "c \<le> 0"
proof -
  {
    assume  "0 < c" 
    then have "b * c < a * c" using ineq by(auto)
    then have "False" using eq by auto
  } then show "c \<le> 0" by (auto simp add: not_le[symmetric]) 
qed
    



lemma "n > 1 \<Longrightarrow> \<not>(prime (2 * n))"
by (metis One_nat_def Suc_leI less_Suc0 not_le numeral_eq_one_iff prime_product semiring_norm(85))



lemma 
 fixes n::"nat"
 assumes a: "n > 1"
    and  b: "\<not>(prime n)"
 shows "\<not>(prime ((2 ^ n) - 1))"   
using a b
apply(induct n)
apply(simp)
apply(simp)



end