thys3/RfltsRdistinctProps.thy
author Chengsong
Fri, 30 Dec 2022 23:41:44 +0000
changeset 640 bd1354127574
parent 556 c27f04bb2262
permissions -rw-r--r--
more proofreading done, last version before submission

theory RfltsRdistinctProps imports "Rsimp"
begin



lemma all_that_same_elem:
  shows "\<lbrakk> a \<in> rset; rdistinct rs {a} = []\<rbrakk>
       \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct rsb rset"
  apply(induct rs)
   apply simp
  apply(subgoal_tac "aa = a")
   apply simp
  by (metis empty_iff insert_iff list.discI rdistinct.simps(2))


lemma rdistinct1:
  assumes "a \<in> acc"
  shows "a \<notin> set (rdistinct rs acc)"
  using assms
  apply(induct rs arbitrary: acc a)
   apply(auto)
  done


lemma rdistinct_does_the_job:
  shows "distinct (rdistinct rs s)"
  apply(induct rs s rule: rdistinct.induct)
  apply(auto simp add: rdistinct1)
  done



lemma rdistinct_concat:
  assumes "set rs \<subseteq> rset"
  shows "rdistinct (rs @ rsa) rset = rdistinct rsa rset"
  using assms
  apply(induct rs)
  apply simp+
  done

lemma distinct_not_exist:
  assumes "a \<notin> set rs"
  shows "rdistinct rs rset = rdistinct rs (insert a rset)"
  using assms
  apply(induct rs arbitrary: rset)
  apply(auto)
  done

lemma rdistinct_on_distinct:
  shows "distinct rs \<Longrightarrow> rdistinct rs {} = rs"
  apply(induct rs)
  apply simp
  using distinct_not_exist by fastforce

lemma distinct_rdistinct_append:
  assumes "distinct rs1" "\<forall>r \<in> set rs1. r \<notin> acc"
  shows "rdistinct (rs1 @ rsa) acc = rs1 @ (rdistinct rsa (acc \<union> set rs1))"
  using assms
  apply(induct rs1 arbitrary: rsa acc)
   apply(auto)[1]
  apply(auto)[1]
  apply(drule_tac x="rsa" in meta_spec)
  apply(drule_tac x="{a} \<union> acc" in meta_spec)
  apply(simp)
  apply(drule meta_mp)
   apply(auto)[1]
  apply(simp)
  done
  

lemma rdistinct_set_equality1:
  shows "set (rdistinct rs acc) = set rs - acc"
  apply(induct rs acc rule: rdistinct.induct)
  apply(auto)
  done


lemma rdistinct_set_equality:
  shows "set (rdistinct rs {}) = set rs"
  by (simp add: rdistinct_set_equality1)



lemma distinct_removes_last:
  shows "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct as rset = rdistinct (as @ [a]) rset"
and "rdistinct (ab # as @ [ab]) rset1 = rdistinct (ab # as) rset1"
   apply(induct as arbitrary: rset ab rset1 a)
     apply simp
    apply simp
  apply(case_tac "aa \<in> rset")
   apply(case_tac "a = aa")
  apply (metis append_Cons)
    apply simp
   apply(case_tac "a \<in> set as")
  apply (metis append_Cons rdistinct.simps(2) set_ConsD)
   apply(case_tac "a = aa")
    prefer 2
    apply simp
   apply (metis append_Cons)
  apply(case_tac "ab \<in> rset1")
  prefer 2
   apply(subgoal_tac "rdistinct (ab # (a # as) @ [ab]) rset1 = 
               ab # (rdistinct ((a # as) @ [ab]) (insert ab rset1))")
  prefer 2
  apply force
  apply(simp only:)
     apply(subgoal_tac "rdistinct (ab # a # as) rset1 = ab # (rdistinct (a # as) (insert ab rset1))")
    apply(simp only:)
    apply(subgoal_tac "rdistinct ((a # as) @ [ab]) (insert ab rset1) = rdistinct (a # as) (insert ab rset1)")
     apply blast
    apply(case_tac "a \<in> insert ab rset1")
     apply simp
     apply (metis insertI1)
    apply simp
    apply (meson insertI1)
   apply simp
  apply(subgoal_tac "rdistinct ((a # as) @ [ab]) rset1 = rdistinct (a # as) rset1")
   apply simp
  by (metis append_Cons insert_iff insert_is_Un rdistinct.simps(2))


lemma distinct_removes_middle:
  shows  "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct (as @ as2) rset = rdistinct (as @ [a] @ as2) rset"
and "rdistinct (ab # as @ [ab] @ as3) rset1 = rdistinct (ab # as @ as3) rset1"
   apply(induct as arbitrary: rset rset1 ab as2 as3 a)
     apply simp
    apply simp
   apply(case_tac "a \<in> rset")
    apply simp
    apply metis
   apply simp
   apply (metis insertI1)
  apply(case_tac "a = ab")
   apply simp
   apply(case_tac "ab \<in> rset")
    apply simp
    apply presburger
   apply (meson insertI1)
  apply(case_tac "a \<in> rset")
  apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left)
  apply(case_tac "ab \<in> rset")
  apply simp
   apply (meson insert_iff)
  apply simp
  by (metis insertI1)


lemma k0b:
  assumes "nonalt r" "r \<noteq> RZERO"
  shows "rflts [r] = [r]"
  using assms
  apply(case_tac  r)
       apply(simp_all)
  done

lemma rflts_def_idiot:
  shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow> rflts (a # rs) = a # rflts rs"
  apply(case_tac a)
  apply simp_all
  done

lemma flts_middle0:
  shows "rflts (rsa @ RZERO # rsb) = rflts (rsa @ rsb)"
  apply(induct rsa)
  apply simp
  by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)


lemma flts_removes0:
  shows "  rflts (rs @ [RZERO])  =
           rflts rs"
  apply(induct rs)
   apply simp
  by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)

lemma rflts_spills_last:
  shows "rflts (rs1 @ [RALTS rs]) = rflts rs1 @ rs"
  apply (induct rs1 rule: rflts.induct)
  apply(auto)
  done

lemma flts_keeps1:
  shows "rflts (rs @ [RONE]) = rflts rs @ [RONE]"
  apply (induct rs rule: rflts.induct)
  apply(auto)
  done

lemma flts_keeps_others:
  shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow>rflts (rs @ [a]) = rflts rs @ [a]"
  apply(induct rs rule: rflts.induct)
  apply(auto)
  by (meson k0b nonalt.elims(3))

lemma spilled_alts_contained:
  shows "\<lbrakk>a = RALTS rs ; a \<in> set rs1\<rbrakk> \<Longrightarrow> \<forall>r \<in> set rs. r \<in> set (rflts rs1)"
  apply(induct rs1)
   apply simp 
  apply(case_tac "a = aa")
   apply simp
  apply(subgoal_tac " a \<in> set rs1")
  prefer 2
   apply (meson set_ConsD)
  apply(case_tac aa)
  using rflts.simps(2) apply presburger
      apply fastforce
  apply fastforce
  apply fastforce
  apply fastforce
  by fastforce


lemma rflts_def_idiot2:
  shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk> \<Longrightarrow> a \<in> set (rflts rs)"
  apply(induct rs rule: rflts.induct)
  apply(auto)
  done

lemma flts_append:
  shows "rflts (rs1 @ rs2) = rflts rs1 @ rflts rs2"
  apply(induct rs1)
   apply simp
  apply(case_tac a)
       apply simp+
  done
lemma distinct_removes_middle3:
  shows  "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct (as @ a #as2) rset = rdistinct (as @ as2) rset"
  using distinct_removes_middle(1) by fastforce


lemma distinct_removes_list:
  shows "\<lbrakk> \<forall>r \<in> set rs. r \<in> set as\<rbrakk> \<Longrightarrow> rdistinct (as @ rs) {} = rdistinct as {}"
  apply(induct rs)
   apply simp+
  apply(subgoal_tac "rdistinct (as @ a # rs) {} = rdistinct (as @ rs) {}")
   prefer 2
  apply (metis append_Cons append_Nil distinct_removes_middle(1))
  by presburger

lemma last_elem_out:
  shows "\<lbrakk>x \<notin> set xs; x \<notin> rset \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]"
  apply(induct xs arbitrary: rset)
  apply simp+
  done


lemma rdistinct_concat_general:
  shows "rdistinct (rs1 @ rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
  apply(induct rs1 arbitrary: rs2 rule: rev_induct)
   apply simp
  apply(drule_tac x = "x # rs2" in meta_spec)
  apply simp
  apply(case_tac "x \<in> set xs")
   apply simp
  
   apply (simp add: distinct_removes_middle3 insert_absorb)
  apply simp
  by (simp add: last_elem_out)



  
lemma distinct_once_enough:
  shows "rdistinct (rs @ rsa) {} = rdistinct (rdistinct rs {} @ rsa) {}"
  apply(subgoal_tac "distinct (rdistinct rs {})")
   apply(subgoal_tac 
" rdistinct (rdistinct rs {} @ rsa) {} = rdistinct rs {} @ (rdistinct rsa (set rs))")
  apply(simp only:)
  using rdistinct_concat_general apply blast
  apply (simp add: distinct_rdistinct_append rdistinct_set_equality1)
  by (simp add: rdistinct_does_the_job)
  



lemma distinct_removes_duplicate_flts:
  shows " a \<in> set rsa
       \<Longrightarrow> rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =
           rdistinct (rflts (map rsimp rsa)) {}"
  apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)")
  prefer 2
   apply simp
  apply(induct "rsimp a")
       apply simp
  using flts_removes0 apply presburger
      apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =  
                          rdistinct (rflts (map rsimp rsa @ [RONE])) {}")
      apply (simp only:)
       apply(subst flts_keeps1)
  apply (metis distinct_removes_last(1) rflts_def_idiot2 rrexp.simps(20) rrexp.simps(6))
      apply presburger
        apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a]))    {} =  
                            rdistinct ((rflts (map rsimp rsa)) @ [RCHAR x]) {}")
      apply (simp only:)
      prefer 2
      apply (metis flts_keeps_others rrexp.distinct(21) rrexp.distinct(3))
  apply (metis distinct_removes_last(1) rflts_def_idiot2 rrexp.distinct(21) rrexp.distinct(3))

    apply (metis distinct_removes_last(1) flts_keeps_others rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(5))
   prefer 2
   apply (metis distinct_removes_last(1) flts_keeps_others flts_removes0 rflts_def_idiot2 rrexp.distinct(29))
  apply(subgoal_tac "rflts (map rsimp rsa @ [rsimp a]) = rflts (map rsimp rsa) @ x")
  prefer 2
  apply (simp add: rflts_spills_last)
  apply(subgoal_tac "\<forall> r \<in> set x. r \<in> set (rflts (map rsimp rsa))")
    prefer 2
  apply (metis (mono_tags, lifting) image_iff image_set spilled_alts_contained)
  apply (metis rflts_spills_last)
  by (metis distinct_removes_list spilled_alts_contained)





lemma distinct_early_app1:
  shows "rset1 \<subseteq> rset \<Longrightarrow> rdistinct rs rset = rdistinct (rdistinct rs rset1) rset"
  apply(induct rs arbitrary: rset rset1)
   apply simp
  apply simp
  apply(case_tac "a \<in> rset1")
   apply simp
   apply(case_tac "a \<in> rset")
    apply simp+
  
   apply blast
  apply(case_tac "a \<in> rset1")
   apply simp+
  apply(case_tac "a \<in> rset")
   apply simp
   apply (metis insert_subsetI)
  apply simp
  by (meson insert_mono)


lemma distinct_early_app:
  shows " rdistinct (rs @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset"
  apply(induct rsb)
   apply simp
  using distinct_early_app1 apply blast
  by (metis distinct_early_app1 distinct_once_enough empty_subsetI)


lemma distinct_eq_interesting1:
  shows "a \<in> rset \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct (rdistinct (a # rs) {} @ rsb) rset"
  apply(subgoal_tac "rdistinct (rdistinct (a # rs) {} @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset")
   apply(simp only:)
  using distinct_early_app apply blast 
  by (metis append_Cons distinct_early_app rdistinct.simps(2))




end