import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: List[Boolean]) extends ARexp
case class ACHAR(bs: List[Boolean], c: Char) extends ARexp
case class AALT(bs: List[Boolean], r1: ARexp, r2: ARexp) extends ARexp
case class ASEQ(bs: List[Boolean], r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: List[Boolean], r: ARexp) extends ARexp
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
}
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
}
// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// mkeps and injection part
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALT(r1, r2) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
case (CHAR(d), Empty) => Chr(c)
}
// main lexing function (produces a value)
// - no simplification
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r)
else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
// Bitcoded + Annotation
//=======================
// translation into ARexps
def fuse(bs: List[Boolean], r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
case ACHAR(cs, c) => ACHAR(bs ++ cs, c)
case AALT(cs, r1, r2) => AALT(bs ++ cs, r1, r2)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
}
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
case CHAR(c) => ACHAR(Nil, c)
case ALT(r1, r2) => AALT(Nil, fuse(List(false), internalise(r1)), fuse(List(true), internalise(r2)))
case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
case STAR(r) => ASTAR(Nil, internalise(r))
}
internalise(("a" | "ab") ~ ("b" | ""))
def retrieve(r: ARexp, v: Val) : List[Boolean] = (r, v) match {
case (AONE(bs), Empty) => bs
case (ACHAR(bs, c), Chr(d)) => bs
case (AALT(bs, r1, r2), Left(v)) => bs ++ retrieve(r1, v)
case (AALT(bs, r1, r2), Right(v)) => bs ++ retrieve(r2, v)
case (ASEQ(bs, r1, r2), Sequ(v1, v2)) =>
bs ++ retrieve(r1, v1) ++ retrieve(r2, v2)
case (ASTAR(bs, r), Stars(Nil)) => bs ++ List(true)
case (ASTAR(bs, r), Stars(v :: vs)) =>
bs ++ List(false) ++ retrieve(r, v) ++ retrieve(ASTAR(Nil, r), Stars(vs))
}
def decode_aux(r: Rexp, bs: List[Boolean]) : (Val, List[Boolean]) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
case (CHAR(c), bs) => (Chr(c), bs)
case (ALT(r1, r2), false::bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Left(v), bs1)
}
case (ALT(r1, r2), true::bs) => {
val (v, bs1) = decode_aux(r2, bs)
(Right(v), bs1)
}
case (SEQ(r1, r2), bs) => {
val (v1, bs1) = decode_aux(r1, bs)
val (v2, bs2) = decode_aux(r2, bs1)
(Sequ(v1, v2), bs2)
}
case (STAR(r1), false::bs) => {
val (v, bs1) = decode_aux(r1, bs)
val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
(Stars(v::vs), bs2)
}
case (STAR(_), true::bs) => (Stars(Nil), bs)
}
def decode(r: Rexp, bs: List[Boolean]) = decode_aux(r, bs) match {
case (v, Nil) => v
case _ => throw new Exception("Not decodable")
}
def encode(v: Val) : List[Boolean] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => false :: encode(v)
case Right(v) => true :: encode(v)
case Sequ(v1, v2) => encode(v1) ::: encode(v2)
case Stars(Nil) => List(true)
case Stars(v::vs) => false :: encode(v) ::: encode(Stars(vs))
}
// nullable function: tests whether the aregular
// expression can recognise the empty string
def anullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
case ACHAR(_,_) => false
case AALT(_, r1, r2) => anullable(r1) || anullable(r2)
case ASEQ(_, r1, r2) => anullable(r1) && anullable(r2)
case ASTAR(_, _) => true
}
def mkepsBC(r: ARexp) : List[Boolean] = r match {
case AONE(bs) => bs
case AALT(bs, r1, r2) =>
if (anullable(r1)) bs ++ mkepsBC(r1) else bs ++ mkepsBC(r2)
case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
case ASTAR(bs, r) => bs ++ List(true)
}
// derivative of a regular expression w.r.t. a character
def ader(c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
case ACHAR(bs, d) => if (c == d) AONE(bs) else AZERO
case AALT(bs, r1, r2) => AALT(bs, ader(c, r1), ader(c, r2))
case ASEQ(bs, r1, r2) =>
if (anullable(r1)) AALT(bs, ASEQ(Nil, ader(c, r1), r2), fuse(mkepsBC(r1), ader(c, r2)))
else ASEQ(bs, ader(c, r1), r2)
case ASTAR(bs, r) => ASEQ(bs, fuse(List(false), ader(c, r)), ASTAR(Nil, r))
}
// derivative w.r.t. a string (iterates der)
@tailrec
def aders (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => aders(s, ader(c, r))
}
// main unsimplified lexing function (produces a value)
def alex(r: ARexp, s: List[Char]) : List[Boolean] = s match {
case Nil => if (anullable(r)) mkepsBC(r) else throw new Exception("Not matched")
case c::cs => alex(ader(c, r), cs)
}
def pre_alexing(r: ARexp, s: String) : List[Boolean] = alex(r, s.toList)
def alexing(r: Rexp, s: String) : Val = decode(r, pre_alexing(internalise(r), s))
def asimp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (asimp(r1), asimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALT(bs1, r1, r2) => (asimp(r1), asimp(r2)) match {
case (AZERO, r2s) => fuse(bs1, r2s)
case (r1s, AZERO) => fuse(bs1, r1s)
case (r1s, r2s) => AALT(bs1, r1s, r2s)
}
case r => r
}
def alex_simp(r: ARexp, s: List[Char]) : List[Boolean] = s match {
case Nil => if (anullable(r)) mkepsBC(r)
else throw new Exception("Not matched")
case c::cs => alex(asimp(ader(c, r)), cs)
}
def alexing_simp(r: Rexp, s: String) : Val =
decode(r, alex_simp(internalise(r), s.toList))
// extracts a string from value
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
}
// Some Tests
//============
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
val rf = ("a" | "ab") ~ ("ab" | "")
println(pre_alexing(internalise(rf), "ab"))
println(alexing(rf, "ab"))
println(alexing_simp(rf, "ab"))
val r0 = ("a" | "ab") ~ ("b" | "")
println(pre_alexing(internalise(r0), "ab"))
println(alexing(r0, "ab"))
println(alexing_simp(r0, "ab"))
val r1 = ("a" | "ab") ~ ("bcd" | "cd")
println(alexing(r1, "abcd"))
println(alexing_simp(r1, "abcd"))
println(alexing((("" | "a") ~ ("ab" | "b")), "ab"))
println(alexing_simp((("" | "a") ~ ("ab" | "b")), "ab"))
println(alexing((("" | "a") ~ ("b" | "ab")), "ab"))
println(alexing_simp((("" | "a") ~ ("b" | "ab")), "ab"))
println(alexing((("" | "a") ~ ("c" | "ab")), "ab"))
println(alexing_simp((("" | "a") ~ ("c" | "ab")), "ab"))
// Sulzmann's tests
//==================
val sulzmann = ("a" | "b" | "ab").%
println(s"Sulzmann Test: ${alexing(sulzmann, "ab" * 1)}")
println(alexing(sulzmann, "a" * 10))
println(alexing_simp(sulzmann, "a" * 10))
for (i <- 1 to 4001 by 500) {
println(i + ": " + "%.5f".format(time_needed(1, alexing_simp(sulzmann, "a" * i))))
}
for (i <- 1 to 16 by 5) {
println(i + ": " + "%.5f".format(time_needed(1, alexing_simp(sulzmann, "ab" * i))))
}
// some automatic testing
def clear() = {
print("")
//print("\33[H\33[2J")
}
// enumerates regular expressions until a certain depth
def enum(n: Int, s: String) : Stream[Rexp] = n match {
case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs #:::
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
(for (r1 <- rs) yield STAR(r1))
}
}
//enum(2, "ab").size
//enum(3, "ab").size
//enum(3, "abc").size
//enum(4, "ab").size
import scala.util.Try
def test_mkeps(r: Rexp) = {
val res1 = Try(Some(mkeps(r))).getOrElse(None)
val res2 = Try(Some(decode(r, mkepsBC(internalise(r))))).getOrElse(None)
if (res1 != res2) println(s"Mkeps disagrees on ${r}")
if (res1 != res2) Some(r) else (None)
}
println("Testing mkeps")
enum(2, "ab").map(test_mkeps).toSet
//enum(3, "ab").map(test_mkeps).toSet
//enum(3, "abc").map(test_mkeps).toSet
//enumerates strings of length n over alphabet cs
def strs(n: Int, cs: String) : Set[String] = {
if (n == 0) Set("")
else {
val ss = strs(n - 1, cs)
ss ++
(for (s <- ss; c <- cs.toList) yield c + s)
}
}
//tests lexing and lexingB
def tests_inj(ss: Set[String])(r: Rexp) = {
clear()
println(s"Testing ${r}")
for (s <- ss) yield {
val res1 = Try(Some(alexing(r, s))).getOrElse(None)
val res2 = Try(Some(alexing_simp(r, s))).getOrElse(None)
if (res1 != res2) println(s"Disagree on ${r} and ${s}")
if (res1 != res2) println(s" ${res1} != ${res2}")
if (res1 != res2) Some((r, s)) else None
}
}
//println("Testing lexing 1")
//enum(2, "ab").map(tests_inj(strs(2, "ab"))).toSet
//println("Testing lexing 2")
//enum(2, "ab").map(tests_inj(strs(3, "abc"))).toSet
//println("Testing lexing 3")
//enum(3, "ab").map(tests_inj(strs(3, "abc"))).toSet
def tests_alexer(ss: Set[String])(r: Rexp) = {
clear()
println(s"Testing ${r}")
for (s <- ss) yield {
val d = der('b', r)
val ad = ader('b', internalise(r))
val res1 = Try(Some(encode(inj(r, 'a', alexing(d, s))))).getOrElse(None)
val res2 = Try(Some(pre_alexing(ad, s))).getOrElse(None)
if (res1 != res2) println(s"Disagree on ${r} and 'a'::${s}")
if (res1 != res2) println(s" ${res1} != ${res2}")
if (res1 != res2) Some((r, s)) else None
}
}
println("Testing alexing 1")
println(enum(2, "ab").map(tests_alexer(strs(2, "ab"))).toSet)
def values(r: Rexp) : Set[Val] = r match {
case ZERO => Set()
case ONE => Set(Empty)
case CHAR(c) => Set(Chr(c))
case ALT(r1, r2) => (for (v1 <- values(r1)) yield Left(v1)) ++
(for (v2 <- values(r2)) yield Right(v2))
case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2)
case STAR(r) => (Set(Stars(Nil)) ++
(for (v <- values(r)) yield Stars(List(v))))
// to do more would cause the set to be infinite
}
def tests_ader(c: Char)(r: Rexp) = {
val d = der(c, r)
val vals = values(d)
for (v <- vals) {
println(s"Testing ${r} and ${v}")
val res1 = retrieve(ader(c, internalise(r)), v)
val res2 = encode(inj(r, c, decode(d, retrieve(internalise(der(c, r)), v))))
if (res1 != res2) println(s"Disagree on ${r}, ${v} and der = ${d}")
if (res1 != res2) println(s" ${res1} != ${res2}")
if (res1 != res2) Some((r, v)) else None
}
}
println("Testing ader/der")
println(enum(2, "ab").map(tests_ader('a')).toSet)
val er = SEQ(ONE,CHAR('a'))
val ev = Right(Empty)
val ed = ALT(SEQ(ZERO,CHAR('a')),ONE)
retrieve(internalise(ed), ev) // => [true]
internalise(er)
ader('a', internalise(er))
retrieve(ader('a', internalise(er)), ev) // => []
decode(ed, List(true)) // gives the value for derivative
decode(er, List()) // gives the value for original value
val dr = STAR(CHAR('a'))
val dr_der = SEQ(ONE,STAR(CHAR('a'))) // derivative of dr
val dr_val = Sequ(Empty,Stars(List())) // value of dr_def
val res1 = retrieve(internalise(der('a', dr)), dr_val) // => [true]
val res2 = retrieve(ader('a', internalise(dr)), dr_val) // => [false, true]
decode(dr_der, res1) // gives the value for derivative
decode(dr, res2) // gives the value for original value
encode(inj(dr, 'a', decode(dr_der, res1)))