theory SizeBound
imports "Lexer"
begin
section \<open>Bit-Encodings\<close>
datatype bit = Z | S
fun code :: "val \<Rightarrow> bit list"
where
"code Void = []"
| "code (Char c) = []"
| "code (Left v) = Z # (code v)"
| "code (Right v) = S # (code v)"
| "code (Seq v1 v2) = (code v1) @ (code v2)"
| "code (Stars []) = [S]"
| "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)"
fun
Stars_add :: "val \<Rightarrow> val \<Rightarrow> val"
where
"Stars_add v (Stars vs) = Stars (v # vs)"
function
decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)"
where
"decode' ds ZERO = (Void, [])"
| "decode' ds ONE = (Void, ds)"
| "decode' ds (CH d) = (Char d, ds)"
| "decode' [] (ALT r1 r2) = (Void, [])"
| "decode' (Z # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))"
| "decode' (S # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))"
| "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in
let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))"
| "decode' [] (STAR r) = (Void, [])"
| "decode' (S # ds) (STAR r) = (Stars [], ds)"
| "decode' (Z # ds) (STAR r) = (let (v, ds') = decode' ds r in
let (vs, ds'') = decode' ds' (STAR r)
in (Stars_add v vs, ds''))"
by pat_completeness auto
lemma decode'_smaller:
assumes "decode'_dom (ds, r)"
shows "length (snd (decode' ds r)) \<le> length ds"
using assms
apply(induct ds r)
apply(auto simp add: decode'.psimps split: prod.split)
using dual_order.trans apply blast
by (meson dual_order.trans le_SucI)
termination "decode'"
apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))")
apply(auto dest!: decode'_smaller)
by (metis less_Suc_eq_le snd_conv)
definition
decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option"
where
"decode ds r \<equiv> (let (v, ds') = decode' ds r
in (if ds' = [] then Some v else None))"
lemma decode'_code_Stars:
assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []"
shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)"
using assms
apply(induct vs)
apply(auto)
done
lemma decode'_code:
assumes "\<Turnstile> v : r"
shows "decode' ((code v) @ ds) r = (v, ds)"
using assms
apply(induct v r arbitrary: ds)
apply(auto)
using decode'_code_Stars by blast
lemma decode_code:
assumes "\<Turnstile> v : r"
shows "decode (code v) r = Some v"
using assms unfolding decode_def
by (smt append_Nil2 decode'_code old.prod.case)
section {* Annotated Regular Expressions *}
datatype arexp =
AZERO
| AONE "bit list"
| ACHAR "bit list" char
| ASEQ "bit list" arexp arexp
| AALTs "bit list" "arexp list"
| ASTAR "bit list" arexp
abbreviation
"AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]"
fun asize :: "arexp \<Rightarrow> nat" where
"asize AZERO = 1"
| "asize (AONE cs) = 1"
| "asize (ACHAR cs c) = 1"
| "asize (AALTs cs rs) = Suc (sum_list (map asize rs))"
| "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)"
| "asize (ASTAR cs r) = Suc (asize r)"
fun
erase :: "arexp \<Rightarrow> rexp"
where
"erase AZERO = ZERO"
| "erase (AONE _) = ONE"
| "erase (ACHAR _ c) = CH c"
| "erase (AALTs _ []) = ZERO"
| "erase (AALTs _ [r]) = (erase r)"
| "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))"
| "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)"
| "erase (ASTAR _ r) = STAR (erase r)"
fun nonalt :: "arexp \<Rightarrow> bool"
where
"nonalt (AALTs bs2 rs) = False"
| "nonalt r = True"
fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where
"fuse bs AZERO = AZERO"
| "fuse bs (AONE cs) = AONE (bs @ cs)"
| "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c"
| "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs"
| "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2"
| "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r"
lemma fuse_append:
shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)"
apply(induct r)
apply(auto)
done
fun intern :: "rexp \<Rightarrow> arexp" where
"intern ZERO = AZERO"
| "intern ONE = AONE []"
| "intern (CH c) = ACHAR [] c"
| "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1))
(fuse [S] (intern r2))"
| "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)"
| "intern (STAR r) = ASTAR [] (intern r)"
fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where
"retrieve (AONE bs) Void = bs"
| "retrieve (ACHAR bs c) (Char d) = bs"
| "retrieve (AALTs bs [r]) v = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
| "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2"
| "retrieve (ASTAR bs r) (Stars []) = bs @ [S]"
| "retrieve (ASTAR bs r) (Stars (v#vs)) =
bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)"
fun
bnullable :: "arexp \<Rightarrow> bool"
where
"bnullable (AZERO) = False"
| "bnullable (AONE bs) = True"
| "bnullable (ACHAR bs c) = False"
| "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)"
| "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)"
| "bnullable (ASTAR bs r) = True"
fun
bmkeps :: "arexp \<Rightarrow> bit list"
where
"bmkeps(AONE bs) = bs"
| "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)"
| "bmkeps(AALTs bs [r]) = bs @ (bmkeps r)"
| "bmkeps(AALTs bs (r#rs)) = (if bnullable(r) then bs @ (bmkeps r) else (bmkeps (AALTs bs rs)))"
| "bmkeps(ASTAR bs r) = bs @ [S]"
fun
bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp"
where
"bder c (AZERO) = AZERO"
| "bder c (AONE bs) = AZERO"
| "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)"
| "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)"
| "bder c (ASEQ bs r1 r2) =
(if bnullable r1
then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2))
else ASEQ bs (bder c r1) r2)"
| "bder c (ASTAR bs r) = ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)"
fun
bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
where
"bders r [] = r"
| "bders r (c#s) = bders (bder c r) s"
lemma bders_append:
"bders r (s1 @ s2) = bders (bders r s1) s2"
apply(induct s1 arbitrary: r s2)
apply(simp_all)
done
lemma bnullable_correctness:
shows "nullable (erase r) = bnullable r"
apply(induct r rule: erase.induct)
apply(simp_all)
done
lemma erase_fuse:
shows "erase (fuse bs r) = erase r"
apply(induct r rule: erase.induct)
apply(simp_all)
done
lemma erase_intern [simp]:
shows "erase (intern r) = r"
apply(induct r)
apply(simp_all add: erase_fuse)
done
lemma erase_bder [simp]:
shows "erase (bder a r) = der a (erase r)"
apply(induct r rule: erase.induct)
apply(simp_all add: erase_fuse bnullable_correctness)
done
lemma erase_bders [simp]:
shows "erase (bders r s) = ders s (erase r)"
apply(induct s arbitrary: r )
apply(simp_all)
done
lemma retrieve_encode_STARS:
assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v"
shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)"
using assms
apply(induct vs)
apply(simp_all)
done
lemma retrieve_fuse2:
assumes "\<Turnstile> v : (erase r)"
shows "retrieve (fuse bs r) v = bs @ retrieve r v"
using assms
apply(induct r arbitrary: v bs)
apply(auto elim: Prf_elims)[4]
defer
using retrieve_encode_STARS
apply(auto elim!: Prf_elims)[1]
apply(case_tac vs)
apply(simp)
apply(simp)
(* AALTs case *)
apply(simp)
apply(case_tac x2a)
apply(simp)
apply(auto elim!: Prf_elims)[1]
apply(simp)
apply(case_tac list)
apply(simp)
apply(auto)
apply(auto elim!: Prf_elims)[1]
done
lemma retrieve_fuse:
assumes "\<Turnstile> v : r"
shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v"
using assms
by (simp_all add: retrieve_fuse2)
lemma retrieve_code:
assumes "\<Turnstile> v : r"
shows "code v = retrieve (intern r) v"
using assms
apply(induct v r )
apply(simp_all add: retrieve_fuse retrieve_encode_STARS)
done
lemma bnullable_Hdbmkeps_Hd:
assumes "bnullable a"
shows "bmkeps (AALTs bs (a # rs)) = bs @ (bmkeps a)"
using assms
by (metis bmkeps.simps(3) bmkeps.simps(4) list.exhaust)
lemma r1:
assumes "\<not> bnullable a" "bnullable (AALTs bs rs)"
shows "bmkeps (AALTs bs (a # rs)) = bmkeps (AALTs bs rs)"
using assms
apply(induct rs)
apply(auto)
done
lemma r2:
assumes "x \<in> set rs" "bnullable x"
shows "bnullable (AALTs bs rs)"
using assms
apply(induct rs)
apply(auto)
done
lemma r3:
assumes "\<not> bnullable r"
" \<exists> x \<in> set rs. bnullable x"
shows "retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs))) =
retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))"
using assms
apply(induct rs arbitrary: r bs)
apply(auto)[1]
apply(auto)
using bnullable_correctness apply blast
apply(auto simp add: bnullable_correctness mkeps_nullable retrieve_fuse2)
apply(subst retrieve_fuse2[symmetric])
apply (smt bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable)
apply(simp)
apply(case_tac "bnullable a")
apply (smt append_Nil2 bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) fuse.simps(4) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable retrieve_fuse2)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="bs" in meta_spec)
apply(drule meta_mp)
apply(simp)
apply(drule meta_mp)
apply(auto)
apply(subst retrieve_fuse2[symmetric])
apply(case_tac rs)
apply(simp)
apply(auto)[1]
apply (simp add: bnullable_correctness)
apply (metis append_Nil2 bnullable_correctness erase_fuse fuse.simps(4) list.set_intros(1) mkeps.simps(3) mkeps_nullable nullable.simps(4) r2)
apply (simp add: bnullable_correctness)
apply (metis append_Nil2 bnullable_correctness erase.simps(6) erase_fuse fuse.simps(4) list.set_intros(2) mkeps.simps(3) mkeps_nullable r2)
apply(simp)
done
lemma t:
assumes "\<forall>r \<in> set rs. nullable (erase r) \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))"
"nullable (erase (AALTs bs rs))"
shows " bmkeps (AALTs bs rs) = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
using assms
apply(induct rs arbitrary: bs)
apply(simp)
apply(auto simp add: bnullable_correctness)
apply(case_tac rs)
apply(auto simp add: bnullable_correctness)[2]
apply(subst r1)
apply(simp)
apply(rule r2)
apply(assumption)
apply(simp)
apply(drule_tac x="bs" in meta_spec)
apply(drule meta_mp)
apply(auto)[1]
prefer 2
apply(case_tac "bnullable a")
apply(subst bnullable_Hdbmkeps_Hd)
apply blast
apply(subgoal_tac "nullable (erase a)")
prefer 2
using bnullable_correctness apply blast
apply (metis (no_types, lifting) erase.simps(5) erase.simps(6) list.exhaust mkeps.simps(3) retrieve.simps(3) retrieve.simps(4))
apply(subst r1)
apply(simp)
using r2 apply blast
apply(drule_tac x="bs" in meta_spec)
apply(drule meta_mp)
apply(auto)[1]
apply(simp)
using r3 apply blast
apply(auto)
using r3 by blast
lemma bmkeps_retrieve:
assumes "nullable (erase r)"
shows "bmkeps r = retrieve r (mkeps (erase r))"
using assms
apply(induct r)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
defer
apply(simp)
apply(rule t)
apply(auto)
done
lemma bder_retrieve:
assumes "\<Turnstile> v : der c (erase r)"
shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"
using assms
apply(induct r arbitrary: v rule: erase.induct)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(case_tac "c = ca")
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(case_tac rs)
apply(simp)
apply(simp)
apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) retrieve.simps(4) retrieve.simps(5) same_append_eq)
apply(simp)
apply(case_tac "nullable (erase r1)")
apply(simp)
apply(erule Prf_elims)
apply(subgoal_tac "bnullable r1")
prefer 2
using bnullable_correctness apply blast
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(subgoal_tac "bnullable r1")
prefer 2
using bnullable_correctness apply blast
apply(simp)
apply(simp add: retrieve_fuse2)
apply(simp add: bmkeps_retrieve)
apply(simp)
apply(erule Prf_elims)
apply(simp)
using bnullable_correctness apply blast
apply(rename_tac bs r v)
apply(simp)
apply(erule Prf_elims)
apply(clarify)
apply(erule Prf_elims)
apply(clarify)
apply(subst injval.simps)
apply(simp del: retrieve.simps)
apply(subst retrieve.simps)
apply(subst retrieve.simps)
apply(simp)
apply(simp add: retrieve_fuse2)
done
lemma MAIN_decode:
assumes "\<Turnstile> v : ders s r"
shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r"
using assms
proof (induct s arbitrary: v rule: rev_induct)
case Nil
have "\<Turnstile> v : ders [] r" by fact
then have "\<Turnstile> v : r" by simp
then have "Some v = decode (retrieve (intern r) v) r"
using decode_code retrieve_code by auto
then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r"
by simp
next
case (snoc c s v)
have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow>
Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact
have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact
then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r"
by (simp add: Prf_injval ders_append)
have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))"
by (simp add: flex_append)
also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r"
using asm2 IH by simp
also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r"
using asm by (simp_all add: bder_retrieve ders_append)
finally show "Some (flex r id (s @ [c]) v) =
decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append)
qed
definition blex where
"blex a s \<equiv> if bnullable (bders a s) then Some (bmkeps (bders a s)) else None"
definition blexer where
"blexer r s \<equiv> if bnullable (bders (intern r) s) then
decode (bmkeps (bders (intern r) s)) r else None"
lemma blexer_correctness:
shows "blexer r s = lexer r s"
proof -
{ define bds where "bds \<equiv> bders (intern r) s"
define ds where "ds \<equiv> ders s r"
assume asm: "nullable ds"
have era: "erase bds = ds"
unfolding ds_def bds_def by simp
have mke: "\<Turnstile> mkeps ds : ds"
using asm by (simp add: mkeps_nullable)
have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r"
using bmkeps_retrieve
using asm era by (simp add: bmkeps_retrieve)
also have "... = Some (flex r id s (mkeps ds))"
using mke by (simp_all add: MAIN_decode ds_def bds_def)
finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))"
unfolding bds_def ds_def .
}
then show "blexer r s = lexer r s"
unfolding blexer_def lexer_flex
apply(subst bnullable_correctness[symmetric])
apply(simp)
done
qed
fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list"
where
"distinctBy [] f acc = []"
| "distinctBy (x#xs) f acc =
(if (f x) \<in> acc then distinctBy xs f acc
else x # (distinctBy xs f ({f x} \<union> acc)))"
lemma dB_single_step:
shows "distinctBy (a#rs) f {} = a # distinctBy rs f {f a}"
by simp
fun flts :: "arexp list \<Rightarrow> arexp list"
where
"flts [] = []"
| "flts (AZERO # rs) = flts rs"
| "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs"
| "flts (r1 # rs) = r1 # flts rs"
fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp"
where
"bsimp_ASEQ _ AZERO _ = AZERO"
| "bsimp_ASEQ _ _ AZERO = AZERO"
| "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2"
| "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2"
fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp"
where
"bsimp_AALTs _ [] = AZERO"
| "bsimp_AALTs bs1 [r] = fuse bs1 r"
| "bsimp_AALTs bs1 rs = AALTs bs1 rs"
fun bsimp :: "arexp \<Rightarrow> arexp"
where
"bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)"
| "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {}) "
| "bsimp r = r"
fun
bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
where
"bders_simp r [] = r"
| "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s"
definition blexer_simp where
"blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then
decode (bmkeps (bders_simp (intern r) s)) r else None"
export_code bders_simp in Scala module_name Example
lemma bders_simp_append:
shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2"
apply(induct s1 arbitrary: r s2)
apply(simp_all)
done
lemma L_bsimp_ASEQ:
"L (SEQ (erase r1) (erase r2)) = L (erase (bsimp_ASEQ bs r1 r2))"
apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
apply(simp_all)
by (metis erase_fuse fuse.simps(4))
lemma L_bsimp_AALTs:
"L (erase (AALTs bs rs)) = L (erase (bsimp_AALTs bs rs))"
apply(induct bs rs rule: bsimp_AALTs.induct)
apply(simp_all add: erase_fuse)
done
lemma L_erase_AALTs:
shows "L (erase (AALTs bs rs)) = \<Union> (L ` erase ` (set rs))"
apply(induct rs)
apply(simp)
apply(simp)
apply(case_tac rs)
apply(simp)
apply(simp)
done
lemma L_erase_flts:
shows "\<Union> (L ` erase ` (set (flts rs))) = \<Union> (L ` erase ` (set rs))"
apply(induct rs rule: flts.induct)
apply(simp_all)
apply(auto)
using L_erase_AALTs erase_fuse apply auto[1]
by (simp add: L_erase_AALTs erase_fuse)
lemma L_erase_dB_acc:
shows "( \<Union>(L ` acc) \<union> ( \<Union> (L ` erase ` (set (distinctBy rs erase acc) ) ) )) = \<Union>(L ` acc) \<union> \<Union> (L ` erase ` (set rs))"
apply(induction rs arbitrary: acc)
apply simp
apply simp
by (smt (z3) SUP_absorb UN_insert sup_assoc sup_commute)
lemma L_erase_dB:
shows " ( \<Union> (L ` erase ` (set (distinctBy rs erase {}) ) ) ) = \<Union> (L ` erase ` (set rs))"
by (metis L_erase_dB_acc Un_commute Union_image_empty)
lemma L_bsimp_erase:
shows "L (erase r) = L (erase (bsimp r))"
apply(induct r)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: Sequ_def)[1]
apply(subst L_bsimp_ASEQ[symmetric])
apply(auto simp add: Sequ_def)[1]
apply(subst (asm) L_bsimp_ASEQ[symmetric])
apply(auto simp add: Sequ_def)[1]
apply(simp)
apply(subst L_bsimp_AALTs[symmetric])
defer
apply(simp)
apply(subst (2)L_erase_AALTs)
apply(subst L_erase_dB)
apply(subst L_erase_flts)
apply(auto)
apply (simp add: L_erase_AALTs)
using L_erase_AALTs by blast
lemma bsimp_ASEQ0:
shows "bsimp_ASEQ bs r1 AZERO = AZERO"
apply(induct r1)
apply(auto)
done
lemma bsimp_ASEQ1:
assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs"
shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2"
using assms
apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
apply(auto)
done
lemma bsimp_ASEQ2:
shows "bsimp_ASEQ bs (AONE bs1) r2 = fuse (bs @ bs1) r2"
apply(induct r2)
apply(auto)
done
lemma L_bders_simp:
shows "L (erase (bders_simp r s)) = L (erase (bders r s))"
apply(induct s arbitrary: r rule: rev_induct)
apply(simp)
apply(simp)
apply(simp add: ders_append)
apply(simp add: bders_simp_append)
apply(simp add: L_bsimp_erase[symmetric])
by (simp add: der_correctness)
lemma b2:
assumes "bnullable r"
shows "bmkeps (fuse bs r) = bs @ bmkeps r"
by (simp add: assms bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2)
lemma b4:
shows "bnullable (bders_simp r s) = bnullable (bders r s)"
by (metis L_bders_simp bnullable_correctness lexer.simps(1) lexer_correct_None option.distinct(1))
lemma qq1:
assumes "\<exists>r \<in> set rs. bnullable r"
shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs)"
using assms
apply(induct rs arbitrary: rs1 bs)
apply(simp)
apply(simp)
by (metis Nil_is_append_conv bmkeps.simps(4) neq_Nil_conv bnullable_Hdbmkeps_Hd split_list_last)
lemma qq2:
assumes "\<forall>r \<in> set rs. \<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r"
shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs1)"
using assms
apply(induct rs arbitrary: rs1 bs)
apply(simp)
apply(simp)
by (metis append_assoc in_set_conv_decomp r1 r2)
lemma flts_append:
shows "flts (xs1 @ xs2) = flts xs1 @ flts xs2"
by (induct xs1 arbitrary: xs2 rule: flts.induct)(auto)
lemma k0a:
shows "flts [AALTs bs rs] = map (fuse bs) rs"
apply(simp)
done
lemma bsimp_AALTs_qq:
assumes "1 < length rs"
shows "bsimp_AALTs bs rs = AALTs bs rs"
using assms
apply(case_tac rs)
apply(simp)
apply(case_tac list)
apply(simp_all)
done
lemma bbbbs1:
shows "nonalt r \<or> (\<exists>bs rs. r = AALTs bs rs)"
using nonalt.elims(3) by auto
fun nonazero :: "arexp \<Rightarrow> bool"
where
"nonazero AZERO = False"
| "nonazero r = True"
lemma flts_single1:
assumes "nonalt r" "nonazero r"
shows "flts [r] = [r]"
using assms
apply(induct r)
apply(auto)
done
lemma q3a:
assumes "\<exists>r \<in> set rs. bnullable r"
shows "bmkeps (AALTs bs (map (fuse bs1) rs)) = bmkeps (AALTs (bs@bs1) rs)"
using assms
apply(induct rs arbitrary: bs bs1)
apply(simp)
apply(simp)
apply(auto)
apply (metis append_assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd)
apply(case_tac "bnullable a")
apply (metis append.assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd)
apply(case_tac rs)
apply(simp)
apply(simp)
apply(auto)[1]
apply (metis bnullable_correctness erase_fuse)+
done
lemma qq4:
assumes "\<exists>x\<in>set list. bnullable x"
shows "\<exists>x\<in>set (flts list). bnullable x"
using assms
apply(induct list rule: flts.induct)
apply(auto)
by (metis UnCI bnullable_correctness erase_fuse imageI)
lemma qs3:
assumes "\<exists>r \<in> set rs. bnullable r"
shows "bmkeps (AALTs bs rs) = bmkeps (AALTs bs (flts rs))"
using assms
apply(induct rs arbitrary: bs taking: size rule: measure_induct)
apply(case_tac x)
apply(simp)
apply(simp)
apply(case_tac a)
apply(simp)
apply (simp add: r1)
apply(simp)
apply (simp add: bnullable_Hdbmkeps_Hd)
apply(simp)
apply(case_tac "flts list")
apply(simp)
apply (metis L_erase_AALTs L_erase_flts L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(4) mkeps_nullable r2)
apply(simp)
apply (simp add: r1)
prefer 3
apply(simp)
apply (simp add: bnullable_Hdbmkeps_Hd)
prefer 2
apply(simp)
apply(case_tac "\<exists>x\<in>set x52. bnullable x")
apply(case_tac "list")
apply(simp)
apply (metis b2 fuse.simps(4) q3a r2)
apply(erule disjE)
apply(subst qq1)
apply(auto)[1]
apply (metis bnullable_correctness erase_fuse)
apply(simp)
apply (metis b2 fuse.simps(4) q3a r2)
apply(simp)
apply(auto)[1]
apply(subst qq1)
apply (metis bnullable_correctness erase_fuse image_eqI set_map)
apply (metis b2 fuse.simps(4) q3a r2)
apply(subst qq1)
apply (metis bnullable_correctness erase_fuse image_eqI set_map)
apply (metis b2 fuse.simps(4) q3a r2)
apply(simp)
apply(subst qq2)
apply (metis bnullable_correctness erase_fuse imageE set_map)
prefer 2
apply(case_tac "list")
apply(simp)
apply(simp)
apply (simp add: qq4)
apply(simp)
apply(auto)
apply(case_tac list)
apply(simp)
apply(simp)
apply (simp add: bnullable_Hdbmkeps_Hd)
apply(case_tac "bnullable (ASEQ x41 x42 x43)")
apply(case_tac list)
apply(simp)
apply(simp)
apply (simp add: bnullable_Hdbmkeps_Hd)
apply(simp)
using qq4 r1 r2 by auto
lemma bder_fuse:
shows "bder c (fuse bs a) = fuse bs (bder c a)"
apply(induct a arbitrary: bs c)
apply(simp_all)
done
inductive rrewrite:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99)
where
"ASEQ bs AZERO r2 \<leadsto> AZERO"
| "ASEQ bs r1 AZERO \<leadsto> AZERO"
| "ASEQ bs (AONE bs1) r \<leadsto> fuse (bs@bs1) r"
| "r1 \<leadsto> r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r2 r3"
| "r3 \<leadsto> r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r1 r4"
| "r \<leadsto> r' \<Longrightarrow> (AALTs bs (rs1 @ [r] @ rs2)) \<leadsto> (AALTs bs (rs1 @ [r'] @ rs2))"
(*context rule for eliminating 0, alts--corresponds to the recursive call flts r::rs = r::(flts rs)*)
| "AALTs bs (rsa@ [AZERO] @ rsb) \<leadsto> AALTs bs (rsa @ rsb)"
| "AALTs bs (rsa@ [AALTs bs1 rs1] @ rsb) \<leadsto> AALTs bs (rsa@(map (fuse bs1) rs1)@rsb)"
(*the below rule for extracting common prefixes between a list of rexp's bitcodes*)
(***| "AALTs bs (map (fuse bs1) rs) \<leadsto> AALTs (bs@bs1) rs"******)
(*opposite direction also allowed, which means bits are free to be moved around
as long as they are on the right path*)
| "AALTs (bs@bs1) rs \<leadsto> AALTs bs (map (fuse bs1) rs)"
| "AALTs bs [] \<leadsto> AZERO"
| "AALTs bs [r] \<leadsto> fuse bs r"
| "erase a1 = erase a2 \<Longrightarrow> AALTs bs (rsa@[a1]@rsb@[a2]@rsc) \<leadsto> AALTs bs (rsa@[a1]@rsb@rsc)"
inductive rrewrites:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100)
where
rs1[intro, simp]:"r \<leadsto>* r"
| rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"
inductive srewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ s\<leadsto>* _" [100, 100] 100)
where
ss1: "[] s\<leadsto>* []"
|ss2: "\<lbrakk>r \<leadsto>* r'; rs s\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (r#rs) s\<leadsto>* (r'#rs')"
(*rs1 = [r1, r2, ..., rn] rs2 = [r1', r2', ..., rn']
[r1, r2, ..., rn] \<leadsto>* [r1', r2, ..., rn] \<leadsto>* [...r2',...] \<leadsto>* [r1', r2',... rn']
*)
lemma r_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2"
using rrewrites.intros(1) rrewrites.intros(2) by blast
lemma real_trans [trans]:
assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3"
shows "r1 \<leadsto>* r3"
using a2 a1
apply(induct r2 r3 arbitrary: r1 rule: rrewrites.induct)
apply(auto)
done
lemma many_steps_later: "\<lbrakk>r1 \<leadsto> r2; r2 \<leadsto>* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"
by (meson r_in_rstar real_trans)
lemma contextrewrites1: "r \<leadsto>* r' \<Longrightarrow> (AALTs bs (r#rs)) \<leadsto>* (AALTs bs (r'#rs))"
apply(induct r r' rule: rrewrites.induct)
apply simp
by (metis append_Cons append_Nil rrewrite.intros(6) rs2)
lemma contextrewrites2: "r \<leadsto>* r' \<Longrightarrow> (AALTs bs (rs1@[r]@rs)) \<leadsto>* (AALTs bs (rs1@[r']@rs))"
apply(induct r r' rule: rrewrites.induct)
apply simp
using rrewrite.intros(6) by blast
lemma srewrites_alt: "rs1 s\<leadsto>* rs2 \<Longrightarrow> (AALTs bs (rs@rs1)) \<leadsto>* (AALTs bs (rs@rs2))"
apply(induct rs1 rs2 arbitrary: bs rs rule: srewrites.induct)
apply(rule rs1)
apply(drule_tac x = "bs" in meta_spec)
apply(drule_tac x = "rsa@[r']" in meta_spec)
apply simp
apply(rule real_trans)
prefer 2
apply(assumption)
apply(drule contextrewrites2)
apply auto
done
corollary srewrites_alt1:
assumes "rs1 s\<leadsto>* rs2"
shows "AALTs bs rs1 \<leadsto>* AALTs bs rs2"
using assms
by (metis append.left_neutral srewrites_alt)
lemma star_seq:
assumes "r1 \<leadsto>* r2"
shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r2 r3"
using assms
apply(induct r1 r2 arbitrary: r3 rule: rrewrites.induct)
apply(auto intro: rrewrite.intros)
done
lemma star_seq2:
assumes "r3 \<leadsto>* r4"
shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r1 r4"
using assms
apply(induct r3 r4 arbitrary: r1 rule: rrewrites.induct)
apply(auto intro: rrewrite.intros)
done
lemma continuous_rewrite:
assumes "r1 \<leadsto>* AZERO"
shows "ASEQ bs1 r1 r2 \<leadsto>* AZERO"
using assms
apply(induction ra\<equiv>"r1" rb\<equiv>"AZERO" arbitrary: bs1 r1 r2 rule: rrewrites.induct)
apply(auto intro: rrewrite.intros r_in_rstar star_seq)
by (meson rrewrite.intros(1) rs2 star_seq)
lemma bsimp_aalts_simpcases:
shows "AONE bs \<leadsto>* bsimp (AONE bs)"
and "AZERO \<leadsto>* bsimp AZERO"
and "ACHAR bs c \<leadsto>* bsimp (ACHAR bs c)"
by (simp_all)
lemma trivialbsimpsrewrites: "\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x \<rbrakk> \<Longrightarrow> rs s\<leadsto>* (map f rs)"
apply(induction rs)
apply simp
apply(rule ss1)
by (metis insert_iff list.simps(15) list.simps(9) srewrites.simps)
lemma bsimp_AALTsrewrites: "AALTs bs1 rs \<leadsto>* bsimp_AALTs bs1 rs"
apply(induction rs)
apply simp
apply(rule r_in_rstar)
apply (simp add: rrewrite.intros(10))
apply(case_tac "rs = Nil")
apply(simp)
using rrewrite.intros(12) apply auto[1]
using r_in_rstar rrewrite.intros(11) apply presburger
apply(subgoal_tac "length (a#rs) > 1")
apply(simp add: bsimp_AALTs_qq)
apply(simp)
done
inductive frewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ f\<leadsto>* _" [100, 100] 100)
where
fs1: "[] f\<leadsto>* []"
|fs2: "\<lbrakk>rs f\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (AZERO#rs) f\<leadsto>* rs'"
|fs3: "\<lbrakk>rs f\<leadsto>* rs'\<rbrakk> \<Longrightarrow> ((AALTs bs rs1) # rs) f\<leadsto>* ((map (fuse bs) rs1) @ rs')"
|fs4: "\<lbrakk>rs f\<leadsto>* rs';nonalt r; nonazero r\<rbrakk> \<Longrightarrow> (r#rs) f\<leadsto>* (r#rs')"
lemma flts_prepend: "\<lbrakk>nonalt a; nonazero a\<rbrakk> \<Longrightarrow> flts (a#rs) = a # (flts rs)"
by (metis append_Cons append_Nil flts_single1 flts_append)
lemma fltsfrewrites: "rs f\<leadsto>* (flts rs)"
apply(induction rs)
apply simp
apply(rule fs1)
apply(case_tac "a = AZERO")
using fs2 apply auto[1]
apply(case_tac "\<exists>bs rs. a = AALTs bs rs")
apply(erule exE)+
apply (simp add: fs3)
apply(subst flts_prepend)
apply(rule nonalt.elims(2))
prefer 2
thm nonalt.elims
apply blast
using bbbbs1 apply blast
apply(simp)+
apply (meson nonazero.elims(3))
by (meson fs4 nonalt.elims(3) nonazero.elims(3))
lemma rrewrite0away: "AALTs bs (AZERO # rsb) \<leadsto> AALTs bs rsb"
by (metis append_Cons append_Nil rrewrite.intros(7))
lemma frewritesaalts:"rs f\<leadsto>* rs' \<Longrightarrow> (AALTs bs (rs1@rs)) \<leadsto>* (AALTs bs (rs1@rs'))"
apply(induct rs rs' arbitrary: bs rs1 rule:frewrites.induct)
apply(rule rs1)
apply(drule_tac x = "bs" in meta_spec)
apply(drule_tac x = "rs1 @ [AZERO]" in meta_spec)
apply(rule real_trans)
apply simp
using rrewrite.intros(7) apply auto[1]
apply(drule_tac x = "bsa" in meta_spec)
apply(drule_tac x = "rs1a @ [AALTs bs rs1]" in meta_spec)
apply(rule real_trans)
apply simp
using r_in_rstar rrewrite.intros(8) apply auto[1]
apply(drule_tac x = "bs" in meta_spec)
apply(drule_tac x = "rs1@[r]" in meta_spec)
apply(rule real_trans)
apply simp
apply auto
done
lemma fltsrewrites: " AALTs bs1 rs \<leadsto>* AALTs bs1 (flts rs)"
apply(induction rs)
apply simp
apply(case_tac "a = AZERO")
apply (metis flts.simps(2) many_steps_later rrewrite0away)
apply(case_tac "\<exists>bs2 rs2. a = AALTs bs2 rs2")
apply(erule exE)+
apply(simp)
prefer 2
apply(subst flts_prepend)
apply (meson nonalt.elims(3))
apply (meson nonazero.elims(3))
apply(subgoal_tac "(a#rs) f\<leadsto>* (a#flts rs)")
apply (metis append_Nil frewritesaalts)
apply (meson fltsfrewrites fs4 nonalt.elims(3) nonazero.elims(3))
by (metis append_Cons append_Nil fltsfrewrites frewritesaalts flts_append k0a)
lemma alts_simpalts: "\<And>bs1 rs. (\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* bsimp x) \<Longrightarrow>
AALTs bs1 rs \<leadsto>* AALTs bs1 (map bsimp rs)"
apply(subgoal_tac " rs s\<leadsto>* (map bsimp rs)")
prefer 2
using trivialbsimpsrewrites apply auto[1]
using srewrites_alt1 by auto
lemma threelistsappend: "rsa@a#rsb = (rsa@[a])@rsb"
apply auto
done
lemma somewhereInside: "r \<in> set rs \<Longrightarrow> \<exists>rs1 rs2. rs = rs1@[r]@rs2"
using split_list by fastforce
lemma somewhereMapInside: "f r \<in> f ` set rs \<Longrightarrow> \<exists>rs1 rs2 a. rs = rs1@[a]@rs2 \<and> f a = f r"
apply auto
by (metis split_list)
lemma alts_dBrewrites_withFront: " AALTs bs (rsa @ rs) \<leadsto>* AALTs bs (rsa @ distinctBy rs erase (erase ` set rsa))"
apply(induction rs arbitrary: rsa)
apply simp
apply(drule_tac x = "rsa@[a]" in meta_spec)
apply(subst threelistsappend)
apply(rule real_trans)
apply simp
apply(case_tac "a \<in> set rsa")
apply simp
apply(drule somewhereInside)
apply(erule exE)+
apply simp
apply(subgoal_tac " AALTs bs
(rs1 @
a #
rs2 @
a #
distinctBy rs erase
(insert (erase a)
(erase `
(set rs1 \<union> set rs2)))) \<leadsto> AALTs bs (rs1@ a # rs2 @ distinctBy rs erase
(insert (erase a)
(erase `
(set rs1 \<union> set rs2)))) ")
prefer 2
using rrewrite.intros(12) apply force
using r_in_rstar apply force
apply(subgoal_tac "erase ` set (rsa @ [a]) = insert (erase a) (erase ` set rsa)")
prefer 2
apply auto[1]
apply(case_tac "erase a \<in> erase `set rsa")
apply simp
apply(subgoal_tac "AALTs bs (rsa @ a # distinctBy rs erase (insert (erase a) (erase ` set rsa))) \<leadsto>
AALTs bs (rsa @ distinctBy rs erase (insert (erase a) (erase ` set rsa)))")
apply force
apply (smt (verit, ccfv_threshold) append_Cons append_assoc append_self_conv2 r_in_rstar rrewrite.intros(12) same_append_eq somewhereMapInside)
by force
lemma alts_dBrewrites: "AALTs bs rs \<leadsto>* AALTs bs (distinctBy rs erase {})"
apply(induction rs)
apply simp
apply simp
using alts_dBrewrites_withFront
by (metis append_Nil dB_single_step empty_set image_empty)
lemma bsimp_rewrite:
shows "r \<leadsto>* bsimp r"
apply(induction r rule: bsimp.induct)
apply simp
apply(case_tac "bsimp r1 = AZERO")
apply simp
using continuous_rewrite apply blast
apply(case_tac "\<exists>bs. bsimp r1 = AONE bs")
apply(erule exE)
apply simp
apply(subst bsimp_ASEQ2)
apply (meson real_trans rrewrite.intros(3) rrewrites.intros(2) star_seq star_seq2)
apply (smt (verit, best) bsimp_ASEQ0 bsimp_ASEQ1 real_trans rrewrite.intros(2) rs2 star_seq star_seq2)
defer
using bsimp_aalts_simpcases(2) apply blast
apply simp
apply simp
apply simp
apply auto
apply(subgoal_tac "AALTs bs1 rs \<leadsto>* AALTs bs1 (map bsimp rs)")
apply(subgoal_tac "AALTs bs1 (map bsimp rs) \<leadsto>* AALTs bs1 (flts (map bsimp rs))")
apply(subgoal_tac "AALTs bs1 (flts (map bsimp rs)) \<leadsto>* AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {})")
apply(subgoal_tac "AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {}) \<leadsto>* bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {} )")
apply (meson real_trans)
apply (meson bsimp_AALTsrewrites)
apply (meson alts_dBrewrites)
using fltsrewrites apply auto[1]
using alts_simpalts by force
lemma rewrite_non_nullable: "\<lbrakk>r1 \<leadsto> r2; \<not>bnullable r1 \<rbrakk> \<Longrightarrow> \<not>bnullable r2"
apply(induction r1 r2 rule: rrewrite.induct)
apply auto
apply (metis bnullable_correctness erase_fuse)+
done
lemma rewrite_non_nullable_strong:
assumes "r1 \<leadsto> r2"
shows "bnullable r1 = bnullable r2"
using assms
apply(induction r1 r2 rule: rrewrite.induct)
apply(auto)
apply(metis bnullable_correctness erase_fuse)+
apply(metis UnCI bnullable_correctness erase_fuse imageI)
apply(metis bnullable_correctness erase_fuse)+
done
lemma rewrite_nullable:
assumes "r1 \<leadsto> r2" "bnullable r1"
shows "bnullable r2"
using assms rewrite_non_nullable_strong
by auto
lemma rewritesnullable:
assumes "r1 \<leadsto>* r2" "bnullable r1"
shows "bnullable r2"
using assms
apply(induction r1 r2 rule: rrewrites.induct)
apply simp
using rewrite_non_nullable_strong by blast
lemma nonbnullable_lists_concat: " \<lbrakk> \<not> (\<exists>r0\<in>set rs1. bnullable r0); \<not> bnullable r; \<not> (\<exists>r0\<in>set rs2. bnullable r0)\<rbrakk> \<Longrightarrow>
\<not>(\<exists>r0 \<in> (set (rs1@[r]@rs2)). bnullable r0 ) "
apply simp
apply blast
done
lemma nomember_bnullable: "\<lbrakk> \<not> (\<exists>r0\<in>set rs1. bnullable r0); \<not> bnullable r; \<not> (\<exists>r0\<in>set rs2. bnullable r0)\<rbrakk>
\<Longrightarrow> \<not>bnullable (AALTs bs (rs1 @ [r] @ rs2))"
using bnullable.simps(4) nonbnullable_lists_concat by presburger
lemma bnullable_segment: " bnullable (AALTs bs (rs1@[r]@rs2)) \<Longrightarrow> bnullable (AALTs bs rs1) \<or> bnullable (AALTs bs rs2) \<or> bnullable r"
apply(case_tac "\<exists>r0\<in>set rs1. bnullable r0")
using r2 apply blast
apply(case_tac "bnullable r")
apply blast
apply(case_tac "\<exists>r0\<in>set rs2. bnullable r0")
using bnullable.simps(4) apply presburger
apply(subgoal_tac "False")
apply blast
using nomember_bnullable by blast
lemma bnullablewhichbmkeps: "\<lbrakk>bnullable (AALTs bs (rs1@[r]@rs2)); \<not> bnullable (AALTs bs rs1); bnullable r \<rbrakk>
\<Longrightarrow> bmkeps (AALTs bs (rs1@[r]@rs2)) = bs @ (bmkeps r)"
using qq2 bnullable_Hdbmkeps_Hd by force
lemma spillbmkepslistr: "bnullable (AALTs bs1 rs1)
\<Longrightarrow> bmkeps (AALTs bs (AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs ( map (fuse bs1) rs1 @ rsb))"
apply(subst bnullable_Hdbmkeps_Hd)
apply simp
by (metis bmkeps.simps(3) k0a list.set_intros(1) qq1 qq4 qs3)
lemma third_segment_bnullable: "\<lbrakk>bnullable (AALTs bs (rs1@rs2@rs3)); \<not>bnullable (AALTs bs rs1); \<not>bnullable (AALTs bs rs2)\<rbrakk> \<Longrightarrow>
bnullable (AALTs bs rs3)"
by (metis append.left_neutral append_Cons bnullable.simps(1) bnullable_segment rrewrite.intros(7) rewrite_non_nullable)
lemma third_segment_bmkeps: "\<lbrakk>bnullable (AALTs bs (rs1@rs2@rs3)); \<not>bnullable (AALTs bs rs1); \<not>bnullable (AALTs bs rs2)\<rbrakk> \<Longrightarrow>
bmkeps (AALTs bs (rs1@rs2@rs3) ) = bmkeps (AALTs bs rs3)"
apply(subgoal_tac "bnullable (AALTs bs rs3)")
apply(subgoal_tac "\<forall>r \<in> set (rs1@rs2). \<not>bnullable r")
apply(subgoal_tac "bmkeps (AALTs bs (rs1@rs2@rs3)) = bmkeps (AALTs bs ((rs1@rs2)@rs3) )")
apply (metis bnullable.simps(4) qq2)
apply (metis append.assoc)
apply (metis append.assoc in_set_conv_decomp r2 third_segment_bnullable)
using third_segment_bnullable by blast
lemma rewrite_bmkepsalt: " \<lbrakk>bnullable (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)); bnullable (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))\<rbrakk>
\<Longrightarrow> bmkeps (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))"
apply(case_tac "bnullable (AALTs bs rsa)")
using qq1 apply force
apply(case_tac "bnullable (AALTs bs1 rs1)")
apply(subst qq2)
using r2 apply blast
apply (metis list.set_intros(1))
apply (metis append_Nil bnullable.simps(1) rewrite_non_nullable_strong rrewrite.intros(10) spillbmkepslistr third_segment_bmkeps)
apply(subgoal_tac "bmkeps (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs rsb) ")
prefer 2
apply (metis append_Cons append_Nil bnullable.simps(1) bnullable_segment rewrite_nullable rrewrite.intros(10) third_segment_bmkeps)
by (metis bnullable.simps(4) rewrite_non_nullable_strong rrewrite.intros(9) third_segment_bmkeps)
lemma rewrite_bmkeps: "\<lbrakk> r1 \<leadsto> r2; bnullable r1\<rbrakk> \<Longrightarrow> bmkeps r1 = bmkeps r2"
apply(frule rewrite_nullable)
apply simp
apply(induction r1 r2 rule: rrewrite.induct)
apply simp
using bnullable.simps(1) bnullable.simps(5) apply blast
apply (simp add: b2)
apply simp
apply simp
apply(frule bnullable_segment)
apply(case_tac "bnullable (AALTs bs rs1)")
using qq1 apply force
apply(case_tac "bnullable r")
using bnullablewhichbmkeps rewrite_nullable apply presburger
apply(subgoal_tac "bnullable (AALTs bs rs2)")
apply(subgoal_tac "\<not> bnullable r'")
apply (simp add: qq2 r1)
using rewrite_non_nullable apply blast
apply blast
apply (simp add: flts_append qs3)
apply (simp add: rewrite_bmkepsalt)
using q3a apply force
apply (simp add: q3a)
apply (simp add: b2)
apply(simp del: append.simps)
apply(case_tac "bnullable a1")
apply (metis append.assoc in_set_conv_decomp qq1)
apply(case_tac "\<exists>r \<in> set rsa. bnullable r")
using qq1 apply presburger
apply(case_tac "\<exists>r \<in> set rsb. bnullable r")
apply (metis UnCI append.assoc qq1 set_append)
apply(case_tac "bnullable a2")
apply (metis bnullable_correctness)
apply(subst qq2)
apply blast
apply(auto)[1]
apply(subst qq2)
apply (metis empty_iff list.set(1) set_ConsD)
apply(auto)[1]
apply(subst qq2)
apply(auto)[2]
apply(subst qq2)
apply(auto)[2]
apply(subst qq2)
apply(auto)[2]
apply(subst qq2)
apply(auto)[2]
apply(subst qq2)
apply(auto)[2]
apply(simp)
done
lemma rewrites_bmkeps:
assumes "r1 \<leadsto>* r2" "bnullable r1"
shows "bmkeps r1 = bmkeps r2"
using assms
proof(induction r1 r2 rule: rrewrites.induct)
case (rs1 r)
then show "bmkeps r = bmkeps r" by simp
next
case (rs2 r1 r2 r3)
then have IH: "bmkeps r1 = bmkeps r2" by simp
have a1: "bnullable r1" by fact
have a2: "r1 \<leadsto>* r2" by fact
have a3: "r2 \<leadsto> r3" by fact
have a4: "bnullable r2" using a1 a2 by (simp add: rewritesnullable)
then have "bmkeps r2 = bmkeps r3" using rewrite_bmkeps a3 a4 by simp
then show "bmkeps r1 = bmkeps r3" using IH by simp
qed
lemma alts_rewrite_front: "r \<leadsto> r' \<Longrightarrow> AALTs bs (r # rs) \<leadsto> AALTs bs (r' # rs)"
by (metis append_Cons append_Nil rrewrite.intros(6))
lemma alt_rewrite_front: "r \<leadsto> r' \<Longrightarrow> AALT bs r r2 \<leadsto> AALT bs r' r2"
using alts_rewrite_front by blast
lemma to_zero_in_alt: " AALT bs (ASEQ [] AZERO r) r2 \<leadsto> AALT bs AZERO r2"
by (simp add: alts_rewrite_front rrewrite.intros(1))
lemma alt_remove0_front: " AALT bs AZERO r \<leadsto> AALTs bs [r]"
by (simp add: rrewrite0away)
lemma alt_rewrites_back: "r2 \<leadsto>* r2' \<Longrightarrow>AALT bs r1 r2 \<leadsto>* AALT bs r1 r2'"
apply(induction r2 r2' arbitrary: bs rule: rrewrites.induct)
apply simp
by (meson rs1 rs2 srewrites_alt1 ss1 ss2)
lemma rewrite_fuse: " r2 \<leadsto> r3 \<Longrightarrow> fuse bs r2 \<leadsto>* fuse bs r3"
apply(induction r2 r3 arbitrary: bs rule: rrewrite.induct)
apply auto
apply (simp add: continuous_rewrite)
apply (simp add: r_in_rstar rrewrite.intros(2))
apply (metis fuse_append r_in_rstar rrewrite.intros(3))
using r_in_rstar star_seq apply blast
using r_in_rstar star_seq2 apply blast
using contextrewrites2 r_in_rstar apply auto[1]
using rrewrite.intros(8) apply auto[1]
using rrewrite.intros(7) apply auto[1]
using rrewrite.intros(8) apply force
apply (metis append_assoc r_in_rstar rrewrite.intros(9))
apply (simp add: r_in_rstar rrewrite.intros(10))
apply (metis fuse_append r_in_rstar rrewrite.intros(11))
using rrewrite.intros(12) by auto
lemma rewrites_fuse:
assumes "r2 \<leadsto>* r2'"
shows "fuse bs1 r2 \<leadsto>* fuse bs1 r2'"
using assms
apply(induction r2 r2' arbitrary: bs1 rule: rrewrites.induct)
apply(auto intro: rewrite_fuse real_trans)
done
lemma bder_fuse_list:
shows "map (bder c \<circ> fuse bs1) rs1 = map (fuse bs1 \<circ> bder c) rs1"
apply(induction rs1)
apply(simp_all add: bder_fuse)
done
lemma rewrite_der_altmiddle: "bder c (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) \<leadsto>* bder c (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))"
apply simp
apply(simp add: bder_fuse_list del: append.simps)
by (metis append.assoc map_map r_in_rstar rrewrite.intros(8) threelistsappend)
lemma lock_step_der_removal:
shows " erase a1 = erase a2 \<Longrightarrow>
bder c (AALTs bs (rsa @ [a1] @ rsb @ [a2] @ rsc)) \<leadsto>*
bder c (AALTs bs (rsa @ [a1] @ rsb @ rsc))"
apply(simp)
using rrewrite.intros(12) by auto
lemma rewrite_after_der: "r1 \<leadsto> r2 \<Longrightarrow> (bder c r1) \<leadsto>* (bder c r2)"
apply(induction r1 r2 arbitrary: c rule: rrewrite.induct)
apply (simp add: r_in_rstar rrewrite.intros(1))
apply simp
apply (meson contextrewrites1 r_in_rstar rrewrite.intros(10) rrewrite.intros(2) rrewrite0away rs2)
apply(simp)
apply(rule many_steps_later)
apply(rule to_zero_in_alt)
apply(rule many_steps_later)
apply(rule alt_remove0_front)
apply(rule many_steps_later)
apply(rule rrewrite.intros(11))
using bder_fuse fuse_append rs1 apply presburger
apply(case_tac "bnullable r1")
prefer 2
apply(subgoal_tac "\<not>bnullable r2")
prefer 2
using rewrite_non_nullable apply presburger
apply simp+
using star_seq apply auto[1]
apply(subgoal_tac "bnullable r2")
apply simp+
apply(subgoal_tac "bmkeps r1 = bmkeps r2")
prefer 2
using rewrite_bmkeps apply auto[1]
using contextrewrites1 star_seq apply auto[1]
using rewrite_nullable apply auto[1]
apply(case_tac "bnullable r1")
apply simp
apply(subgoal_tac "ASEQ [] (bder c r1) r3 \<leadsto> ASEQ [] (bder c r1) r4")
prefer 2
using rrewrite.intros(5) apply blast
apply(rule many_steps_later)
apply(rule alt_rewrite_front)
apply assumption
apply (meson alt_rewrites_back rewrites_fuse)
apply (simp add: r_in_rstar rrewrite.intros(5))
using contextrewrites2 apply force
using rrewrite.intros(7) apply force
using rewrite_der_altmiddle apply auto[1]
apply (metis bder.simps(4) bder_fuse_list map_map r_in_rstar rrewrite.intros(9))
apply (simp add: r_in_rstar rrewrite.intros(10))
apply (simp add: r_in_rstar rrewrite.intros(10))
using bder_fuse r_in_rstar rrewrite.intros(11) apply presburger
using lock_step_der_removal by auto
lemma rewrites_after_der:
assumes "r1 \<leadsto>* r2"
shows "bder c r1 \<leadsto>* bder c r2"
using assms
apply(induction r1 r2 rule: rrewrites.induct)
apply(simp_all add: rewrite_after_der real_trans)
done
lemma central:
shows "bders r s \<leadsto>* bders_simp r s"
proof(induct s arbitrary: r rule: rev_induct)
case Nil
then show "bders r [] \<leadsto>* bders_simp r []" by simp
next
case (snoc x xs)
have IH: "\<And>r. bders r xs \<leadsto>* bders_simp r xs" by fact
have "bders r (xs @ [x]) = bders (bders r xs) [x]" by (simp add: bders_append)
also have "... \<leadsto>* bders (bders_simp r xs) [x]" using IH
by (simp add: rewrites_after_der)
also have "... \<leadsto>* bders_simp (bders_simp r xs) [x]" using IH
by (simp add: bsimp_rewrite)
finally show "bders r (xs @ [x]) \<leadsto>* bders_simp r (xs @ [x])"
by (simp add: bders_simp_append)
qed
lemma quasi_main:
assumes "bnullable (bders r s)"
shows "bmkeps (bders r s) = bmkeps (bders_simp r s)"
using assms central rewrites_bmkeps by blast
theorem main_main:
shows "blexer r s = blexer_simp r s"
by (simp add: b4 blexer_def blexer_simp_def quasi_main)
theorem blexersimp_correctness:
shows "lexer r s = blexer_simp r s"
using blexer_correctness main_main by auto
unused_thms
end