theory PDerivs
imports Spec
begin
abbreviation
"SEQs rs r \<equiv> (\<Union>r' \<in> rs. {SEQ r' r})"
lemma SEQs_eq_image:
"SEQs rs r = (\<lambda>r'. SEQ r' r) ` rs"
by auto
primrec
pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pder c ZERO = {}"
| "pder c ONE = {}"
| "pder c (CHAR d) = (if c = d then {ONE} else {})"
| "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
| "pder c (SEQ r1 r2) =
(if nullable r1 then SEQs (pder c r1) r2 \<union> pder c r2 else SEQs (pder c r1) r2)"
| "pder c (STAR r) = SEQs (pder c r) (STAR r)"
primrec
pders :: "char list \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pders [] r = {r}"
| "pders (c # s) r = \<Union> (pders s ` pder c r)"
abbreviation
pder_set :: "char \<Rightarrow> rexp set \<Rightarrow> rexp set"
where
"pder_set c rs \<equiv> \<Union> (pder c ` rs)"
abbreviation
pders_set :: "char list \<Rightarrow> rexp set \<Rightarrow> rexp set"
where
"pders_set s rs \<equiv> \<Union> (pders s ` rs)"
lemma pders_append:
"pders (s1 @ s2) r = \<Union> (pders s2 ` pders s1 r)"
by (induct s1 arbitrary: r) (simp_all)
lemma pders_snoc:
shows "pders (s @ [c]) r = pder_set c (pders s r)"
by (simp add: pders_append)
lemma pders_simps [simp]:
shows "pders s ZERO = (if s = [] then {ZERO} else {})"
and "pders s ONE = (if s = [] then {ONE} else {})"
and "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
by (induct s) (simp_all)
lemma pders_CHAR:
shows "pders s (CHAR c) \<subseteq> {CHAR c, ONE}"
by (induct s) (simp_all)
subsection \<open>Relating left-quotients and partial derivatives\<close>
lemma Sequ_UNION_distrib:
shows "A ;; \<Union>(M ` I) = \<Union>((\<lambda>i. A ;; M i) ` I)"
and "\<Union>(M ` I) ;; A = \<Union>((\<lambda>i. M i ;; A) ` I)"
by (auto simp add: Sequ_def)
lemma Der_pder:
shows "Der c (L r) = \<Union> (L ` pder c r)"
by (induct r) (simp_all add: nullable_correctness Sequ_UNION_distrib)
lemma Ders_pders:
shows "Ders s (L r) = \<Union> (L ` pders s r)"
proof (induct s arbitrary: r)
case (Cons c s)
have ih: "\<And>r. Ders s (L r) = \<Union> (L ` pders s r)" by fact
have "Ders (c # s) (L r) = Ders s (Der c (L r))" by (simp add: Ders_def Der_def)
also have "\<dots> = Ders s (\<Union> (L ` pder c r))" by (simp add: Der_pder)
also have "\<dots> = (\<Union>A\<in>(L ` (pder c r)). (Ders s A))"
by (auto simp add: Ders_def)
also have "\<dots> = \<Union> (L ` (pders_set s (pder c r)))"
using ih by auto
also have "\<dots> = \<Union> (L ` (pders (c # s) r))" by simp
finally show "Ders (c # s) (L r) = \<Union> (L ` pders (c # s) r)" .
qed (simp add: Ders_def)
subsection \<open>Relating derivatives and partial derivatives\<close>
lemma der_pder:
shows "\<Union> (L ` (pder c r)) = L (der c r)"
unfolding der_correctness Der_pder by simp
lemma ders_pders:
shows "\<Union> (L ` (pders s r)) = L (ders s r)"
unfolding der_correctness ders_correctness Ders_pders by simp
subsection \<open>Finiteness property of partial derivatives\<close>
definition
pders_Set :: "string set \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pders_Set A r \<equiv> \<Union>x \<in> A. pders x r"
lemma pders_Set_subsetI:
assumes "\<And>s. s \<in> A \<Longrightarrow> pders s r \<subseteq> C"
shows "pders_Set A r \<subseteq> C"
using assms unfolding pders_Set_def by (rule UN_least)
lemma pders_Set_union:
shows "pders_Set (A \<union> B) r = (pders_Set A r \<union> pders_Set B r)"
by (simp add: pders_Set_def)
lemma pders_Set_subset:
shows "A \<subseteq> B \<Longrightarrow> pders_Set A r \<subseteq> pders_Set B r"
by (auto simp add: pders_Set_def)
definition
"UNIV1 \<equiv> UNIV - {[]}"
lemma pders_Set_ZERO [simp]:
shows "pders_Set UNIV1 ZERO = {}"
unfolding UNIV1_def pders_Set_def by auto
lemma pders_Set_ONE [simp]:
shows "pders_Set UNIV1 ONE = {}"
unfolding UNIV1_def pders_Set_def by (auto split: if_splits)
lemma pders_Set_CHAR [simp]:
shows "pders_Set UNIV1 (CHAR c) = {ONE}"
unfolding UNIV1_def pders_Set_def
apply(auto)
apply(frule rev_subsetD)
apply(rule pders_CHAR)
apply(simp)
apply(case_tac xa)
apply(auto split: if_splits)
done
lemma pders_Set_ALT [simp]:
shows "pders_Set UNIV1 (ALT r1 r2) = pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2"
unfolding UNIV1_def pders_Set_def by auto
text \<open>Non-empty suffixes of a string (needed for the cases of @{const SEQ} and @{const STAR} below)\<close>
definition
"PSuf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
lemma PSuf_snoc:
shows "PSuf (s @ [c]) = (PSuf s) ;; {[c]} \<union> {[c]}"
unfolding PSuf_def Sequ_def
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
lemma PSuf_Union:
shows "(\<Union>v \<in> PSuf s ;; {[c]}. f v) = (\<Union>v \<in> PSuf s. f (v @ [c]))"
by (auto simp add: Sequ_def)
lemma pders_Set_snoc:
shows "pders_Set (PSuf s ;; {[c]}) r = (pder_set c (pders_Set (PSuf s) r))"
unfolding pders_Set_def
by (simp add: PSuf_Union pders_snoc)
lemma pderivs_SEQ:
shows "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)"
proof (induct s rule: rev_induct)
case (snoc c s)
have ih: "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)"
by fact
have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))"
by (simp add: pders_snoc)
also have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2))"
using ih by fastforce
also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pder_set c (pders_Set (PSuf s) r2)"
by (simp)
also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pders_Set (PSuf s ;; {[c]}) r2"
by (simp add: pders_Set_snoc)
also
have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2) \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
by auto
also
have "\<dots> \<subseteq> SEQs (pder_set c (pders s r1)) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
by (auto simp add: if_splits)
also have "\<dots> = SEQs (pders (s @ [c]) r1) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
by (simp add: pders_snoc)
also have "\<dots> \<subseteq> SEQs (pders (s @ [c]) r1) r2 \<union> pders_Set (PSuf (s @ [c])) r2"
unfolding pders_Set_def by (auto simp add: PSuf_snoc)
finally show ?case .
qed (simp)
lemma pders_Set_SEQ_aux1:
assumes a: "s \<in> UNIV1"
shows "pders_Set (PSuf s) r \<subseteq> pders_Set UNIV1 r"
using a unfolding UNIV1_def PSuf_def pders_Set_def by auto
lemma pders_Set_SEQ_aux2:
assumes a: "s \<in> UNIV1"
shows "SEQs (pders s r1) r2 \<subseteq> SEQs (pders_Set UNIV1 r1) r2"
using a unfolding pders_Set_def by auto
lemma pders_Set_SEQ:
shows "pders_Set UNIV1 (SEQ r1 r2) \<subseteq> SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2"
apply(rule pders_Set_subsetI)
apply(rule subset_trans)
apply(rule pderivs_SEQ)
using pders_Set_SEQ_aux1 pders_Set_SEQ_aux2
apply auto
apply blast
done
lemma pders_STAR:
assumes a: "s \<noteq> []"
shows "pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)"
using a
proof (induct s rule: rev_induct)
case (snoc c s)
have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)" by fact
{ assume asm: "s \<noteq> []"
have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by (simp add: pders_snoc)
also have "\<dots> \<subseteq> pder_set c (SEQs (pders_Set (PSuf s) r) (STAR r))"
using ih[OF asm] by fast
also have "\<dots> \<subseteq> SEQs (pder_set c (pders_Set (PSuf s) r)) (STAR r) \<union> pder c (STAR r)"
by (auto split: if_splits)
also have "\<dots> \<subseteq> SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r) \<union> (SEQs (pder c r) (STAR r))"
by (simp only: PSuf_snoc pders_Set_snoc pders_Set_union)
(auto simp add: pders_Set_def)
also have "\<dots> = SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r)"
by (auto simp add: PSuf_snoc PSuf_Union pders_snoc pders_Set_def)
finally have ?case .
}
moreover
{ assume asm: "s = []"
then have ?case by (auto simp add: pders_Set_def pders_snoc PSuf_def)
}
ultimately show ?case by blast
qed (simp)
lemma pders_Set_STAR:
shows "pders_Set UNIV1 (STAR r) \<subseteq> SEQs (pders_Set UNIV1 r) (STAR r)"
apply(rule pders_Set_subsetI)
apply(rule subset_trans)
apply(rule pders_STAR)
apply(simp add: UNIV1_def)
apply(simp add: UNIV1_def PSuf_def)
apply(auto simp add: pders_Set_def)
done
lemma finite_SEQs [simp]:
assumes a: "finite A"
shows "finite (SEQs A r)"
using a by auto
lemma finite_pders_Set_UNIV1:
shows "finite (pders_Set UNIV1 r)"
apply(induct r)
apply(simp_all add:
finite_subset[OF pders_Set_SEQ]
finite_subset[OF pders_Set_STAR])
done
lemma pders_Set_UNIV:
shows "pders_Set UNIV r = pders [] r \<union> pders_Set UNIV1 r"
unfolding UNIV1_def pders_Set_def
by blast
lemma finite_pders_Set_UNIV:
shows "finite (pders_Set UNIV r)"
unfolding pders_Set_UNIV
by (simp add: finite_pders_Set_UNIV1)
lemma finite_pders_set:
shows "finite (pders_Set A r)"
by (metis finite_pders_Set_UNIV pders_Set_subset rev_finite_subset subset_UNIV)
text \<open>The following relationship between the alphabetic width of regular expressions
(called \<open>awidth\<close> below) and the number of partial derivatives was proved
by Antimirov~\cite{Antimirov95} and formalized by Max Haslbeck.\<close>
fun awidth :: "rexp \<Rightarrow> nat" where
"awidth ZERO = 0" |
"awidth ONE = 0" |
"awidth (CHAR a) = 1" |
"awidth (ALT r1 r2) = awidth r1 + awidth r2" |
"awidth (SEQ r1 r2) = awidth r1 + awidth r2" |
"awidth (STAR r1) = awidth r1"
lemma card_SEQs_pders_Set_le:
shows "card (SEQs (pders_Set A r) s) \<le> card (pders_Set A r)"
using finite_pders_set
unfolding SEQs_eq_image
by (rule card_image_le)
lemma card_pders_set_UNIV1_le_awidth:
shows "card (pders_Set UNIV1 r) \<le> awidth r"
proof (induction r)
case (ALT r1 r2)
have "card (pders_Set UNIV1 (ALT r1 r2)) = card (pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2)" by simp
also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
by(simp add: card_Un_le)
also have "\<dots> \<le> awidth (ALT r1 r2)" using ALT.IH by simp
finally show ?case .
next
case (SEQ r1 r2)
have "card (pders_Set UNIV1 (SEQ r1 r2)) \<le> card (SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2)"
by (simp add: card_mono finite_pders_set pders_Set_SEQ)
also have "\<dots> \<le> card (SEQs (pders_Set UNIV1 r1) r2) + card (pders_Set UNIV1 r2)"
by (simp add: card_Un_le)
also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
by (simp add: card_SEQs_pders_Set_le)
also have "\<dots> \<le> awidth (SEQ r1 r2)" using SEQ.IH by simp
finally show ?case .
next
case (STAR r)
have "card (pders_Set UNIV1 (STAR r)) \<le> card (SEQs (pders_Set UNIV1 r) (STAR r))"
by (simp add: card_mono finite_pders_set pders_Set_STAR)
also have "\<dots> \<le> card (pders_Set UNIV1 r)" by (rule card_SEQs_pders_Set_le)
also have "\<dots> \<le> awidth (STAR r)" by (simp add: STAR.IH)
finally show ?case .
qed (auto)
text\<open>Antimirov's Theorem 3.4:\<close>
theorem card_pders_set_UNIV_le_awidth:
shows "card (pders_Set UNIV r) \<le> awidth r + 1"
proof -
have "card (insert r (pders_Set UNIV1 r)) \<le> Suc (card (pders_Set UNIV1 r))"
by(auto simp: card_insert_if[OF finite_pders_Set_UNIV1])
also have "\<dots> \<le> Suc (awidth r)" by(simp add: card_pders_set_UNIV1_le_awidth)
finally show ?thesis by(simp add: pders_Set_UNIV)
qed
text\<open>Antimirov's Corollary 3.5:\<close>
corollary card_pders_set_le_awidth:
shows "card (pders_Set A r) \<le> awidth r + 1"
proof -
have "card (pders_Set A r) \<le> card (pders_Set UNIV r)"
by (simp add: card_mono finite_pders_set pders_Set_subset)
also have "... \<le> awidth r + 1"
by (rule card_pders_set_UNIV_le_awidth)
finally show "card (pders_Set A r) \<le> awidth r + 1" by simp
qed
end