thys/Paper/Paper.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 25 Feb 2016 12:17:31 +0000
changeset 105 80218dddbb15
parent 103 ffe5d850df62
child 107 6adda4a667b1
permissions -rw-r--r--
updated

(*<*)
theory Paper
imports "../ReStar" "~~/src/HOL/Library/LaTeXsugar"
begin

declare [[show_question_marks = false]]

notation (latex output)
   If  ("(\<^raw:\textrm{>if\<^raw:}> (_)/ \<^raw:\textrm{>then\<^raw:}> (_)/ \<^raw:\textrm{>else\<^raw:}> (_))" 10) and
  Cons ("_::_" [78,77] 73) and
  val.Char ("Char _" [1000] 78) and
  val.Left ("Left _" [1000] 78) and
  val.Right ("Right _" [1000] 78) and
  L ("L _" [1000] 0) and
  flat ("|_|" [70] 73) and
  Sequ ("_ @ _" [78,77] 63) and
  injval ("inj _ _ _" [1000,77,1000] 77) and 
  projval ("proj _ _ _" [1000,77,1000] 77) and 
  length ("len _" [78] 73) 
  (* and ValOrd ("_ \<succeq>\<^bsub>_\<^esub> _" [78,77,77] 73) *)
(*>*)

section {* Introduction *}

text {*

  \noindent
  Regular exprtessions

  \begin{center}
  @{text "r :="}
  @{const "NULL"} $\mid$
  @{const "EMPTY"} $\mid$
  @{term "CHAR c"} $\mid$
  @{term "ALT r\<^sub>1 r\<^sub>2"} $\mid$
  @{term "SEQ r\<^sub>1 r\<^sub>2"} $\mid$
  @{term "STAR r"} 
  \end{center}

  \noindent
  Values

  \begin{center}
  @{text "v :="}
  @{const "Void"} $\mid$
  @{term "val.Char c"} $\mid$
  @{term "Left v"} $\mid$
  @{term "Right v"} $\mid$
  @{term "Seq v\<^sub>1 v\<^sub>2"} $\mid$ 
  @{term "Stars vs"} 
  \end{center}  

  \noindent
  The language of a regular expression

  \begin{center}
  \begin{tabular}{lcl}
  @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\
  @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\
  @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\
  @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\
  \end{tabular}
  \end{center}

  \noindent
  The nullable function

  \begin{center}
  \begin{tabular}{lcl}
  @{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\
  @{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\
  @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\
  @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\\
  \end{tabular}
  \end{center}

  \noindent
  The derivative function for characters and strings

  \begin{center}
  \begin{tabular}{lcp{7.5cm}}
  @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
  @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
  @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\
  @{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)}\medskip\\

  @{thm (lhs) ders.simps(1)} & $\dn$ & @{thm (rhs) ders.simps(1)}\\
  @{thm (lhs) ders.simps(2)} & $\dn$ & @{thm (rhs) ders.simps(2)}\\
  \end{tabular}
  \end{center}

  \noindent
  The @{const flat} function for values

  \begin{center}
  \begin{tabular}{lcl}
  @{thm (lhs) flat.simps(1)} & $\dn$ & @{thm (rhs) flat.simps(1)}\\
  @{thm (lhs) flat.simps(2)} & $\dn$ & @{thm (rhs) flat.simps(2)}\\
  @{thm (lhs) flat.simps(3)} & $\dn$ & @{thm (rhs) flat.simps(3)}\\
  @{thm (lhs) flat.simps(4)} & $\dn$ & @{thm (rhs) flat.simps(4)}\\
  @{thm (lhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
  @{thm (lhs) flat.simps(6)} & $\dn$ & @{thm (rhs) flat.simps(6)}\\
  @{thm (lhs) flat.simps(7)} & $\dn$ & @{thm (rhs) flat.simps(7)}\\
  \end{tabular}
  \end{center}

  \noindent
  The @{const mkeps} function

  \begin{center}
  \begin{tabular}{lcl}
  @{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\
  @{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
  @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
  \end{tabular}
  \end{center}

  \noindent
  The @{text inj} function

  \begin{center}
  \begin{tabular}{lcl}
  @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
  @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
      @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
  @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
      @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
  @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
      & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
  @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
      & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
  @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
      & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
  @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$ 
      & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
  \end{tabular}
  \end{center}

  \noindent
  The inhabitation relation:

  \begin{center}
  \begin{tabular}{c}
  @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]}\medskip\\ 
  @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} \qquad 
  @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\medskip\\
  @{thm[mode=Axiom] Prf.intros(4)} \qquad 
  @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\medskip\\
  @{thm[mode=Axiom] Prf.intros(6)[of "r"]} \qquad 
  @{thm[mode=Rule] Prf.intros(7)[of "v" "r" "vs"]}\medskip\\
  \end{tabular}
  \end{center}

  \noindent
  We have also introduced a slightly restricted version of this relation
  where the last rule is restricted so that @{term "flat v \<noteq> []"}.
  This relation for \emph{non-problematic} is written @{term "\<Turnstile> v : r"}.
  \bigskip


  \noindent
  Our Posix relation @{term "s \<in> r \<rightarrow> v"}

  \begin{center}
  \begin{tabular}{c}
  @{thm[mode=Axiom] PMatch.intros(1)} \qquad
  @{thm[mode=Axiom] PMatch.intros(2)}\medskip\\
  @{thm[mode=Rule] PMatch.intros(3)[of "s" "r\<^sub>1" "v" "r\<^sub>2"]}\qquad
  @{thm[mode=Rule] PMatch.intros(4)[of "s" "r\<^sub>2" "v" "r\<^sub>1"]}\medskip\\
  \multicolumn{1}{p{5cm}}{@{thm[mode=Rule] PMatch.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}\medskip\\
  @{thm[mode=Rule] PMatch.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}\medskip\\
  @{thm[mode=Axiom] PMatch.intros(7)}\medskip\\
  \end{tabular}
  \end{center}

  \noindent
  Our version of Sulzmann's ordering relation

  \begin{center}
  \begin{tabular}{c}
  @{thm[mode=Rule] ValOrd.intros(2)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>1'" "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'"]} \qquad
  @{thm[mode=Rule] ValOrd.intros(1)[of "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'" "v\<^sub>1" "r\<^sub>1"]}\medskip\\
  @{thm[mode=Rule] ValOrd.intros(3)[of "v\<^sub>1" "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]} \qquad
  @{thm[mode=Rule] ValOrd.intros(4)[of "v\<^sub>2" "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]}\medskip\\ 
  @{thm[mode=Rule] ValOrd.intros(5)[of "v\<^sub>2" "r\<^sub>2" "v\<^sub>2'" "r\<^sub>1"]} \qquad
  @{thm[mode=Rule] ValOrd.intros(6)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>1'"  "r\<^sub>2"]} \medskip\\
  @{thm[mode=Axiom] ValOrd.intros(7)}\qquad
  @{thm[mode=Axiom] ValOrd.intros(8)[of "c"]}\medskip\\
  @{thm[mode=Rule] ValOrd.intros(9)[of "v" "vs" "r"]}\qquad
  @{thm[mode=Rule] ValOrd.intros(10)[of "v" "vs" "r"]}\medskip\\
  @{thm[mode=Rule] ValOrd.intros(11)[of "v\<^sub>1" "r" "v\<^sub>2" "vs\<^sub>1" "vs\<^sub>2"]}\medskip\\
  @{thm[mode=Rule] ValOrd.intros(12)[of "vs\<^sub>1" "r" "vs\<^sub>2" "v"]}\qquad
  @{thm[mode=Axiom] ValOrd.intros(13)[of "r"]}\medskip\\
  \end{tabular}
  \end{center}

  \noindent
  A prefix of a string s

  \begin{center}
  \begin{tabular}{c}
  @{thm prefix_def[of "s\<^sub>1" "s\<^sub>2"]}
  \end{tabular}
  \end{center}

  \noindent
  Values and non-problematic values

  \begin{center}
  \begin{tabular}{c}
  @{thm Values_def}\medskip\\
  @{thm NValues_def}
  \end{tabular}
  \end{center}


  \noindent
  The point is that for a given @{text s} and @{text r} there are only finitely many
  non-problematic values.
*} 

text {* 
  \noindent
  Some lemmas we have proved:\bigskip
  
  @{thm L_flat_Prf}

  @{thm L_flat_NPrf}

  @{thm[mode=IfThen] mkeps_nullable}

  @{thm[mode=IfThen] mkeps_flat}

  @{thm[mode=IfThen] v3}

  @{thm[mode=IfThen] v4}
  
  @{thm[mode=IfThen] PMatch_mkeps}
  
  @{thm[mode=IfThen] PMatch1(2)}

  @{thm[mode=IfThen] PMatch1N}

  @{thm[mode=IfThen] PMatch_determ(1)[of "s" "r" "v\<^sub>1" "v\<^sub>2"]}

  \medskip
  \noindent
  This is the main theorem that lets us prove that the algorithm is correct according to
  @{term "s \<in> r \<rightarrow> v"}:

  @{thm[mode=IfThen] PMatch2}

  \mbox{}\bigskip
  
  \noindent {\bf Proof} The proof is by induction on the definition of
  @{const der}. Other inductions would go through as well. The
  interesting case is for @{term "SEQ r\<^sub>1 r\<^sub>2"}. First we analyse the
  case where @{term "nullable r\<^sub>1"}. We have by induction hypothesis

  \[
  \begin{array}{l}
  (IH1)\quad @{text "\<forall>s v."} \text{\;if\;} @{term "s \<in> der c r\<^sub>1 \<rightarrow> v"} 
  \text{\;then\;} @{term "(c # s) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v"}\\
  (IH2)\quad @{text "\<forall>s v."} \text{\;if\;} @{term "s \<in> der c r\<^sub>2 \<rightarrow> v"} 
  \text{\;then\;} @{term "(c # s) \<in> r\<^sub>2 \<rightarrow> injval r\<^sub>2 c v"}
  \end{array}
  \]
  
  \noindent
  and have 

  \[
  @{term "s \<in> ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c r\<^sub>2) \<rightarrow> v"}
  \]
  
  \noindent
  There are two cases what @{term v} can be: (1) @{term "Left v'"} and (2) @{term "Right v'"}.

  \begin{itemize}
  \item[(1)] We know @{term "s \<in> SEQ (der c r\<^sub>1) r\<^sub>2 \<rightarrow> v'"} holds, from which we
  can infer that there are @{text "s\<^sub>1"}, @{term "s\<^sub>2"}, @{text "v\<^sub>1"}, @{term "v\<^sub>2"}
  with

  \[
  @{term "s\<^sub>1 \<in> der c r\<^sub>1 \<rightarrow> v\<^sub>1"} \qquad\text{and}\qquad @{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"}
  \]

  and also

  \[
  @{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) \<and> s\<^sub>4 \<in> L r\<^sub>2)"}
  \]

  \noindent
  and have to prove
  
  \[
  @{term "((c # s\<^sub>1) @ s\<^sub>2) \<in> SEQ r\<^sub>1 r\<^sub>2 \<rightarrow> Seq (injval r\<^sub>1 c v\<^sub>1) v\<^sub>2"}
  \]

  \noindent
  The two requirements @{term "(c # s\<^sub>1) \<in> r\<^sub>1 \<rightarrow> injval r\<^sub>1 c v\<^sub>1"} and 
  @{term "s\<^sub>2 \<in> r\<^sub>2 \<rightarrow> v\<^sub>2"} can be proved by the induction hypothese (IH1) and the
  fact above.

  \noindent
  This leaves to prove
  
  \[
  @{term "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \<and> (c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 \<and> s\<^sub>4 \<in> L r\<^sub>2)"}
  \]
  
  \noindent
  which holds because @{term "(c # s\<^sub>1) @ s\<^sub>3 \<in> L r\<^sub>1 "} implies @{term "s\<^sub>1 @ s\<^sub>3 \<in> L (der c r\<^sub>1) "}

  \item[(2)] This case is similar.
  \end{itemize}

  \noindent 
  The final case is that @{term " \<not> nullable r\<^sub>1"} holds. This case again similar
  to the cases above.
*}


text {*
  %\noindent
  %{\bf Acknowledgements:}
  %We are grateful for the comments we received from anonymous
  %referees.

  \bibliographystyle{plain}
  \bibliography{root}

  \section{Roy's Rules}

   \newcommand{\abs}[1]{\mid\!\! #1\!\! \mid}
   %%\newcommand{\mts}{\textit{``''}
   \newcommand{\tl}{\ \triangleleft\ }
   $$\inferrule[]{Void \tl \epsilon}{}
            \quad\quad
     \inferrule[]{Char\ c \tl Lit\ c}{}
   $$
   $$\inferrule
       {v_1 \tl r_1}
       {Left\ v_1 \tl r_1 + r_2}
   \quad\quad
     \inferrule[]
       { v_2 \tl r_2 \\ \abs{v_2}\ \not\in\ L(r_1)}
       {Right\ v_2 \tl r_1 + r_2}
   $$
   $$
   \inferrule
       {v_1 \tl r_1\\
        v_2 \tl r_2\\
        s \in\  L(r_1\backslash\! \abs{v_1}) \ \land\
        \abs{v_2}\!\backslash s\ \epsilon\ L(r_2)
        \ \Rightarrow\ s = []
       }
       {(v_1, v_2) \tl r_1 \cdot r_2}
   $$
   $$\inferrule
         { v \tl r \\ vs \tl r^* \\ \abs{v}\ \not=\ []} 
         { (v :: vs) \tl r^* }
   \quad\quad
       \inferrule{}
         { []  \tl r^* }       
   $$

*}


(*<*)
end
(*>*)