// package zre
//Zre5: eliminated mems table
import scala.collection.mutable.{Map => MMap}
import scala.collection.mutable.{ArrayBuffer => MList}
//import pprint._
import scala.util.Try
import pprint._
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case object DummyFilling extends Val
// abstract class Rexp {
// def equals(other: Rexp) : Boolean = this.eq(other)
// }
abstract class Rexp
case object ZERO extends Rexp // matches nothing
case object ONE extends Rexp // matches an empty string
case class CHAR(c: Char) extends Rexp // matches a character c
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative
case class AL1(r1: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence
case class STAR(r: Rexp) extends Rexp
case object RTOP extends Rexp
//Seq a b --> Seq Seqa Seqb
//Seq a b --> Sequ chra chrb
//ALT r1 r2 --> mALT
// AltC L AltC R
var cyclicPreventionList : Set[Int]= Set()
abstract class Ctx(var starIters: Int = 0){
//starIters = 0
}
case object RootC extends Ctx
case class SeqC( mForMyself: Mem, processedSibling: List[Val], unpSibling: List[Rexp]) extends Ctx
case class AltC( mForMyself: Mem, wrapper: Val => Val) extends Ctx
case class StarC(mForMyself: Mem, vs: List[Val], inside: Rexp) extends Ctx
case class Mem(var parents: MList[Ctx], var result : MList[(Int, Val)])
//AltC(Mem(RootC::Nil, Map()))
type Zipper = (Val, Mem)
var mems : MMap[(Int, Rexp), Mem] = MMap()
//start pos, original regex --> result entry
var pos : Int = 0
//size: of a Aregx for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALT(r1, r2) => 1 + List(r1, r2).map(size).sum
case STAR(r) => 1 + size(r)
}
//input ..................
// ^ ^
// p q
// r
//parse r[p...q] --> v
//(a+aa)*
//aaa
//[R(Sequ(a, a)), vs]
//[L(a), L(a), vs]
def check_before_down(c: Ctx, r: Rexp, starIters: Int = 0) : List[Zipper] = {
c.starIters = starIters
mems.get((pos, r)) match {
case Some(m) =>
// c match {
// case StarC(m, vs, inside) => vs.length
// }
val idx = m.parents.lastIndexWhere(c0 => c0.starIters <= c.starIters)
// if(m.parents.size == 1){
// println("third parent added")
// println(simpleCtxDisplay(c))
// println("the other parents")
// m.parents.foreach(c00 => println(c00.starIters))
// println(idx + 1)
// println("c's star iters: "+ c.starIters)
// println(s"the others' star iters: ${m.parents(0).starIters}")
// }
m.parents.insert(idx + 1, c)
//m.parents = m.parents:::List(c)
m.result.find(endPos_value => endPos_value._1 == pos) match {
// case Some((i, v)) =>
// original_up(v, c, starIters)
case None =>
List()
}
case None =>
val m = Mem(MList(c), MList.empty[(Int, Val)])
mems = mems + ((pos, r) -> m)
original_down(r, m, starIters)
}
// val m = Mem(c::Nil, MList.empty[(Int, Val)])
// original_down(r, m, d)
}
//mems pstart r --> m parents [(pend, vres), ...]
//aaa
//012
//seq a a
//0 a~a --> m ... [(2, Sequ a a)]
// c match {
// case StarC(mst, vst, rst) => print(s"StarC $vst\t")
// case SeqC(mse, pr, unp) => print(s"SeqC $unp\t")
// case AltC(mal, w) => print(s"AltC ${w(Empty)}\t")
// case RootC => print("Root")
// }
def reorderCtx(cs: List[Ctx]): List[Ctx] = {
Nil
}
def mem_up(vres: Val, m: Mem, starIters : Int = 0) : List[Zipper] = {
m.result += (pos -> vres)
//m.parents = m.parents.reverse
// if(m.parents.size > 1){//println()
// println()
// println("each of the contexts")
// m.parents.reverse.foreach (c =>
// println(simpleCtxDisplay(c))
// )
// println("after distinctCtx")
// distinctCtx(m.parents.reverse).foreach(c =>
// println(simpleCtxDisplay(c))
// )
// //println(s"vs is $vss")
// }
//.distinctBy(zipBackToRegex(_))
//TODO: too many arraybuffer->list conversions
(m.parents).distinctBy(zipBackToRegex(_)).flatMap((c: Ctx) =>
original_up(vres, c, starIters)
).toList
// m.parents.reverse.flatMap((c: Ctx) =>
// original_up(vres, c, rec_depth)
// )
// original_up(vres, m.parents.last, rec_depth)
}
def original_down(r: Rexp, m: Mem, starIters: Int = 0) : List[Zipper] = (r, m) match {
case (CHAR(b), m) => {
if (input(pos) == b) {
List((Chr(b), m))
}
else
Nil
}
case (ONE, m) => Nil//mem_up(Empty, m, starIters)
case (SEQ(r1, r2), m) =>
// if(nullable(r1)){
// val mprime = Mem(AltC(m, x => x )::Nil, MList.empty[(Int, Val)])
// check_before_down(SeqC(mprime, Nil, List(r2)), r1, starIters) :::
// check_before_down(SeqC(mprime, mkeps(r1)::Nil, Nil), r2, starIters)
// }
// else
check_before_down(SeqC(m, Nil, List(r2)), r1, starIters)
case (ALT(r1, r2), m) =>
check_before_down(AltC(m, Left(_)), r1, starIters) :::
check_before_down(AltC(m, Right(_)), r2, starIters)
case (STAR(r0), m) =>
check_before_down(StarC(m, Nil, r0), r0, starIters) :::
mem_up(Stars(Nil), m, starIters)
case (_, _) => throw new Exception("original down unexpected r or m")
}
def original_up(v: Val, c: Ctx, starIters: Int = 0) : List[Zipper] =
{
(v, c) match {
case (v, SeqC(m, v1::Nil, Nil)) =>
mem_up(Sequ(v1, v), m, starIters)
case (v, SeqC(m, vs, u1::Nil)) =>
check_before_down(SeqC(m, v::vs, Nil), u1, starIters)
case (v, AltC(m, wrap)) => m.result.find(tup2 => tup2._1 == pos) match {
case Some( (i, vPrime) ) =>
m.result += (i -> wrap(v))
Nil
case None =>
mem_up(wrap(v), m, starIters)
} //mem_up(AL1(v), par)
//case (v, StarC(m, vs, r0)) => throw new Exception("why not hit starC")
case (v, RootC) =>
Nil
case (v, StarC(m, vs, r0) ) => //mem_up(Stars(v::vs), m, starIters) //:::
check_before_down(StarC(m, v::vs, r0), r0, starIters + 1) :::
mem_up(Stars((v::vs).reverse), m, starIters)
case (_, _) => throw new Exception("hit unexpected context")
}
}
def derive(p: Int, z: Zipper) : List[Zipper] = {
pos = p
//println(s"z's actual size is ${actualZipperSize(z::Nil)}")
z match {
case (v, m) =>
mem_up(v, m)
case _ => throw new Exception("error")
}
}
//let e' = Seq([]) in
//
def init_zipper(r: Rexp) : Zipper = {
val m_top = Mem(MList(RootC), MList.empty[(Int, Val)])
val c_top = SeqC(m_top, Nil, r::Nil)
val m_r = Mem(MList(c_top), MList.empty[(Int, Val)])
println(s"initial zipper is (Empty, $m_r)")
(Empty, m_r)//TODO: which val should we start with? Maybe Empty, maybe doesn't matter
// val dummyRexp = ONE
// val dummyMem = Mem()
}
def plug_convert(v: Val, c: Ctx) : List[Val] =
{
c match {
case RootC => List(v)
//TODO: non-binary Seq requires ps.rev
case SeqC(m, ps::Nil, Nil) =>
plug_mem(Sequ(ps, v), m)
//TODO: un not nullable--partial values?
case SeqC(m, Nil, un::Nil) =>
if(nullable(un))
plug_mem(Sequ(v, mkeps(un)), m)
else
Nil
//TODO: when multiple results stored in m, which one to choose?
case AltC(m, wrap) =>
plug_mem(wrap(v), m)
case StarC(m, vs, r0) => plug_mem(Stars((v::vs).reverse), m)
}
}
var cnt = 0;
def plug_mem(v: Val, m: Mem) : List[Val] = {
m.result += (pos -> v)
//TODO: eliminate arraybuffer->list conversion
m.parents.flatMap({c =>
plug_convert(v, c)
}
).toList
}
def plug_all(zs: List[Zipper]) : List[Val] = {
zs.flatMap(z => plug_mem(z._1, z._2))
}
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALT(r1, r2) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case _ => DummyFilling
}
def nullable(r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case _ => false
}
val tokList : List[Char] = "aab".toList
var input : List[Char] = tokList
def lexRecurse(zs: List[Zipper], index: Int) : List[Zipper] = {
if(index < input.length )
lexRecurse(zs.flatMap(z => derive(index, z) ), index + 1)
else
zs
}
def lex(r: Rexp, s: String) : List[Zipper] = {
input = s.toList
lexRecurse(init_zipper(r)::Nil, 0)
}
implicit def charlist2rexp(s: List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::cs => SEQ(CHAR(c), charlist2rexp(cs))
}
implicit def string2Rexp(s: String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def ~ (s: Rexp) = SEQ(r, s)
def % = STAR(r)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def % = STAR(s)
}
//derive(0, init_zipper(re0))
// println(re1s.length)
// mems.foreach(a => println(a))
// val re1sPlugged = plug_all(re1s)
// re1sPlugged.foreach(zipper => {
// println(zipper);
// println("delimit")
// })
// mems.clear()
// println(mems)
// println(re0)
// val re2s = lex(re0, "aab")
// val re2sPlugged = plug_all(re2s)
// re2sPlugged.foreach(v => {
// val Sequ(Empty, vp) = v
// println(vp)
// }
// )
// val re0 = SEQ(ALT(CHAR('a'), SEQ(CHAR('a'),CHAR('a'))),
// ALT(SEQ(CHAR('a'), CHAR('b')), SEQ(CHAR('b'), CHAR('c')) )
// )
// val (rgraph, re0root) = makeGraphFromObject(re0)
// val asciir = GraphLayout.renderGraph(rgraph)
// println("printing out re0")
// println(asciir)
// val re1s = lex(re0, "aabc")
def actualZipperSize(zs: List[Zipper]) : Int = zs match {
case Nil => 0
case z::zs1 => countParents(z._2) + actualZipperSize(zs1)
}
def countParents(m: Mem) : Int = {
m.parents.map(c => countGrandParents(c)).sum
}
def countGrandParents(c: Ctx) : Int = {
c match {
case RootC => 1
case SeqC(m, pr, unp) => countParents(m)
case AltC(m, w) => countParents(m)
case StarC(m, _, _) => countParents(m)
}
}
//(a+aa)* \a --> (1 + a)(a+aa)* --> (a+aa)* + (1+a)(a+aa)*
//a(a+aa)* + 1(a+aa)* + (a+aa)*
//a~(a + aa)* \a -> 1 ~ (a + aa)*
//va <-----> m --> SeqC(m1, pr, "a") --> AltC(m4, Right)--> StarC(m2, vs, "a" + "aa") --> SeqC(m) ---> Root
// ^
// ---> AltC(m4, Left)
def zipBackToRegex(c: Ctx, r: Rexp = ONE) : Rexp = {
c match {
case RootC => r
case SeqC(m, pr, Nil) => zipBackToRegex(m.parents.head, r)
case SeqC(m, pr, unp::Nil) => zipBackToRegex(m.parents.head, SEQ(r, unp))
case AltC(m, w) => zipBackToRegex(m.parents.head, r)
case StarC(m, vs, r0) => zipBackToRegex(m.parents.head, SEQ(r, STAR(r0)))
}
}
def zipperSimp(z: Zipper) : Unit = z match {
case (v, m) => //m.parents = m.parents.distinctBy(c => zipBackToRegex(c))
}
def distinctCtx(cs: List[Ctx]) : List[Ctx] = cs.distinctBy(c => zipBackToRegex(c))
def simpleCtxDisplay(c: Ctx, indent : Int = 0) : String = c match {
case SeqC(m, pr, unp) => "Sc[m:" ++ printMem(m, indent + 1) ++
"pr:" ++ pr.map(v => shortValOutput(v)).mkString(", ") ++ " unp:" ++ unp.map(r2 => shortRexpOutput(r2)).mkString(", ") ++ "]"
case AltC(m, w) =>
w(Empty) match {
case Left(_) => s"Ac(m:${printMem(m, indent + 1)}, Left(_))"
case Right(_) => s"Ac(m:${printMem(m, indent + 1)}, Right(_))"
case Empty => s"Ac(m:${printMem(m, indent + 1)}, id)"
}
case StarC(m, vs, r0) => s"StarC[m:" ++ printMem(m, indent + 1) ++
"vs:" ++ vs.map(v => shortValOutput(v)).mkString(", ") ++ " r0: " ++ shortRexpOutput(r0)
case RootC => "Root"
//case AL1(r) => s"(+${shortRexpOutput(r)})"
//case STAR(r) => "STAR(" ++ shortRexpOutput(r) ++ ")"
//case RTOP => "RTOP"
}
def printMem(m: Mem, indent: Int = 0) : String = {
"M(par:" ++
m.parents.map(c => simpleCtxDisplay(c, indent + 1)).mkString("(",",", ")") ++
(", results:") ++
(for(iRexp <- m.result)
yield iRexp match {case (p: Int, v: Val) => s"$p->${shortValOutput(v)}"}
).mkString("(",",", ")") ++
")"
}
def shortRexpOutput(r: Rexp) : String = r match {
case CHAR(c) => c.toString
case ONE => "1"
case ZERO => "0"
case SEQ(r1, r2) => "[" ++ shortRexpOutput(r1) ++ "~" ++ shortRexpOutput(r2) ++ "]"
case ALT(r1, r2) => "(" ++ shortRexpOutput(r1) ++ "+" ++ shortRexpOutput(r2) ++ ")"
case STAR(r) => "[" ++ shortRexpOutput(r) ++ "]*"
//case STAR(r) => "STAR(" ++ shortRexpOutput(r) ++ ")"
case RTOP => "RTOP"
}
def shortValOutput(v: Val) : String = v match {
case Left(v) => "L(" ++ shortValOutput(v) ++ ")"
case Right(v) => "R(" ++ shortValOutput(v) ++ ")"
case Empty => "e"
case Sequ(v1, v2) => "[" ++ shortValOutput(v1) ++ "~" ++ shortValOutput(v2) ++ "]"
case Chr(a) => a.toString
case Stars(vs) => "Stars" ++ vs.map(shortValOutput(_)).mkString("[", ",", "]")
case _ => "???"
}
//def crystalizeZipper
for(i <- 1 to 2) {
mems.clear()
println(s"there are $i number of a's")
val re1 = ("a" | "ab" ) ~ ("c" | "bc")//(("a" | "b") ~ "c" | ("b" | "e") ~ "c" ) ~ "f"
val re1Lexed = lex(re1, "abc")
//drawZippers(re1Lexed)
println("size of actual zipper (including memoized contexts")
println(actualZipperSize(re1Lexed))
//println(re1Lexed)
//re1Lexed.foreach(zipperSimp(_))
//println(actualZipperSize(re1S))
val re1resPlugged = plug_all(re1Lexed)
//println(actualZipperSize(re1Lexed))
println("value extracted")
re1resPlugged.foreach(v => {
val Sequ(Empty, vp) = v
println(vp)
}
)
}
mems.clear()
val re2 = SEQ(ONE, "a")
val re2res = lex(re2, "a")
//lex(1~a, "a") --> lexRecurse((1v, m (SeqC(m (RootC, Nil), Nil, [1~a] ) )))
println(re2res)
val re2resPlugged = plug_all(re2res)
re2resPlugged.foreach(v => {
val Sequ(Empty, vp) = v
println(vp)
}
)
// println("remaining regex")
// println(re1ss.flatMap(z => zipBackMem(z._2)))
// val re1ssPlugged = plug_all(re1ss)
// println("each of the values")
// re1ssPlugged.foreach(v => {
// //val Sequ(Empty, vp) = v
// //println(vp)
// println(v)
// }
// )
// println(mems.size)
//println(mems)
//mems.map({case (ir, m) => if (ir._1 == 1 && ir._2 == CHAR('b')) println(printMem(m)) })
// println("Mkeps + inj:")
// println(
// mems.get((0, re1)) match {
// case Some(m) => printMem(m)
// case None => ""
// }
// )
// println(re1sPlugged)
//drawZippers(re1s, plugOrNot = false)
// re1s.foreach{
// re1 =>
// {
// drawZippers(derive(1, re1), plugOrNot = true)
// }
// }