thys3/Rsimp.thy
author Chengsong
Mon, 03 Oct 2022 02:08:49 +0100
changeset 609 61139fdddae0
parent 556 c27f04bb2262
permissions -rw-r--r--
chap1 totally done

theory Rsimp imports "Lexer"
begin

datatype rrexp = 
  RZERO
| RONE 
| RCHAR char
| RSEQ rrexp rrexp
| RALTS "rrexp list"
| RSTAR rrexp

abbreviation
  "RALT r1 r2 \<equiv> RALTS [r1, r2]"


fun
  RL :: "rrexp \<Rightarrow> string set"
where
  "RL (RZERO) = {}"
| "RL (RONE) = {[]}"
| "RL (RCHAR c) = {[c]}"
| "RL (RSEQ r1 r2) = (RL r1) ;; (RL r2)"
| "RL (RALTS rs) = (\<Union> (set (map RL rs)))"
| "RL (RSTAR r) = (RL r)\<star>"



fun
 rnullable :: "rrexp \<Rightarrow> bool"
where
  "rnullable (RZERO) = False"
| "rnullable (RONE) = True"
| "rnullable (RCHAR c) = False"
| "rnullable (RALTS rs) = (\<exists>r \<in> set rs. rnullable r)"
| "rnullable (RSEQ r1 r2) = (rnullable r1 \<and> rnullable r2)"
| "rnullable (RSTAR r) = True"


fun
 rder :: "char \<Rightarrow> rrexp \<Rightarrow> rrexp"
where
  "rder c (RZERO) = RZERO"
| "rder c (RONE) = RZERO"
| "rder c (RCHAR d) = (if c = d then RONE else RZERO)"
| "rder c (RALTS rs) = RALTS (map (rder c) rs)"
| "rder c (RSEQ r1 r2) = 
     (if rnullable r1
      then RALT   (RSEQ (rder c r1) r2) (rder c r2)
      else RSEQ   (rder c r1) r2)"
| "rder c (RSTAR r) = RSEQ  (rder c r) (RSTAR r)"


fun 
  rders :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
where
  "rders r [] = r"
| "rders r (c#s) = rders (rder c r) s"

fun rdistinct :: "'a list \<Rightarrow>'a set \<Rightarrow> 'a list"
  where
  "rdistinct [] acc = []"
| "rdistinct (x#xs)  acc = 
     (if x \<in> acc then rdistinct xs  acc 
      else x # (rdistinct xs  ({x} \<union> acc)))"


fun rflts :: "rrexp list \<Rightarrow> rrexp list"
  where 
  "rflts [] = []"
| "rflts (RZERO # rs) = rflts rs"
| "rflts ((RALTS rs1) # rs) = rs1 @ rflts rs"
| "rflts (r1 # rs) = r1 # rflts rs"

fun nonalt :: "rrexp \<Rightarrow> bool"
  where
  "nonalt (RALTS  rs) = False"
| "nonalt r = True"

fun rsimp_ALTs :: " rrexp list \<Rightarrow> rrexp"
  where
  "rsimp_ALTs  [] = RZERO"
| "rsimp_ALTs [r] =  r"
| "rsimp_ALTs rs = RALTS rs"

fun rsimp_SEQ :: " rrexp \<Rightarrow> rrexp \<Rightarrow> rrexp"
  where
  "rsimp_SEQ  RZERO _ = RZERO"
| "rsimp_SEQ  _ RZERO = RZERO"
| "rsimp_SEQ RONE r2 = r2"
| "rsimp_SEQ r1 r2 = RSEQ r1 r2"


fun rsimp :: "rrexp \<Rightarrow> rrexp" 
  where
  "rsimp (RSEQ r1 r2) = rsimp_SEQ  (rsimp r1) (rsimp r2)"
| "rsimp (RALTS rs) = rsimp_ALTs  (rdistinct (rflts (map rsimp rs))  {}) "
| "rsimp r = r"


fun 
  rders_simp :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
where
  "rders_simp r [] = r"
| "rders_simp r (c#s) = rders_simp (rsimp (rder c r)) s"

fun rsize :: "rrexp \<Rightarrow> nat" where
  "rsize RZERO = 1"
| "rsize (RONE) = 1" 
| "rsize (RCHAR  c) = 1"
| "rsize (RALTS  rs) = Suc (sum_list (map rsize rs))"
| "rsize (RSEQ  r1 r2) = Suc (rsize r1 + rsize r2)"
| "rsize (RSTAR  r) = Suc (rsize r)"

abbreviation rsizes where
  "rsizes rs \<equiv> sum_list (map rsize rs)"

fun nonnested :: "rrexp \<Rightarrow> bool"
  where
  "nonnested (RALTS []) = True"
| "nonnested (RALTS ((RALTS rs1) # rs2)) = False"
| "nonnested (RALTS (r # rs2)) = nonnested (RALTS rs2)"
| "nonnested r = True"


fun good :: "rrexp \<Rightarrow> bool" where
  "good RZERO = False"
| "good (RONE) = True" 
| "good (RCHAR c) = True"
| "good (RALTS []) = False"
| "good (RALTS [r]) = False"
| "good (RALTS (r1 # r2 # rs)) = 
    ((distinct ( (r1 # r2 # rs))) \<and>
     (\<forall>r' \<in> set (r1 # r2 # rs). good r' \<and> nonalt r'))"
| "good (RSEQ RZERO _) = False"
| "good (RSEQ RONE _) = False"
| "good (RSEQ  _ RZERO) = False"
| "good (RSEQ r1 r2) = (good r1 \<and> good r2)"
| "good (RSTAR r) = True"

fun nonazero :: "rrexp \<Rightarrow> bool"
  where
  "nonazero RZERO = False"
| "nonazero r = True"






lemma basic_rsimp_SEQ_property1:
  shows "rsimp_SEQ RONE r = r"
  apply(induct r)
       apply simp+
  done


lemma basic_rsimp_SEQ_property3:
  shows "rsimp_SEQ r RZERO = RZERO"  
  using rsimp_SEQ.elims by blast


lemma rsimpalts_conscons:
  shows "rsimp_ALTs (r1 # rsa @ r2 # rsb) = RALTS (r1 # rsa @ r2 # rsb)"
  by (metis Nil_is_append_conv list.exhaust rsimp_ALTs.simps(3))

lemma rsimp_alts_equal:
  shows "rsimp_ALTs (rsa @ a # rsb @ a # rsc) = RALTS (rsa @ a # rsb @ a # rsc) "
  by (metis append_Cons append_Nil neq_Nil_conv rsimpalts_conscons)


end