thys2/ClosedForms.thy
author Christian Urban <christian.urban@kcl.ac.uk>
Sat, 19 Mar 2022 13:56:44 +0000
changeset 455 55cbaea99fc9
parent 453 d68b9db4c9ec
child 456 26a5e640cdd7
permissions -rw-r--r--
merged

theory ClosedForms imports
"BasicIdentities"
begin

lemma add0_isomorphic:
  shows "rsimp_ALTs (rdistinct (rflts [rsimp r, RZERO]) {}) = rsimp r"
  sorry


lemma distinct_append_simp:
  shows " rsimp (rsimp_ALTs rs1) = rsimp (rsimp_ALTs rs2) \<Longrightarrow>
           rsimp (rsimp_ALTs (f a # rs1)) =
           rsimp (rsimp_ALTs (f a # rs2))"
  apply(case_tac rs1)
   apply simp
   apply(case_tac rs2)
    apply simp
   apply simp
   prefer 2
   apply(case_tac list)
    apply(case_tac rs2)
     apply simp
  using add0_isomorphic apply blast 
    apply simp
  sorry

(*  apply (smt (z3) append.right_neutral empty_iff list.distinct(1) list.inject no_alt_short_list_after_simp no_further_dB_after_simp rdistinct.elims rflts.elims rflts.simps(2) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2)))*)





lemma simp_rdistinct_f: shows 
"f ` rset = frset \<Longrightarrow> rsimp (rsimp_ALTs (map f (rdistinct rs rset))) = rsimp (rsimp_ALTs (rdistinct (map f rs) frset))  "
  apply(induct rs arbitrary: rset)
   apply simp
   apply(case_tac "a \<in> rset")
  apply(case_tac " f a \<in> frset")
   apply simp
   apply blast
  apply(subgoal_tac "f a \<notin> frset")
   apply(simp)
   apply(subgoal_tac "f ` (insert a rset) = insert (f a) frset")
  prefer 2
  apply (meson image_insert)
  
  oops

lemma spawn_simp_rsimpalts:
  shows "rsimp (rsimp_ALTs rs) = rsimp (rsimp_ALTs (map rsimp rs))"
  apply(cases rs)
   apply simp
  apply(case_tac list)
   apply simp
   apply(subst rsimp_idem[symmetric])
   apply simp
  apply(subgoal_tac "rsimp_ALTs rs = RALTS rs")
   apply(simp only:)
   apply(subgoal_tac "rsimp_ALTs (map rsimp rs) = RALTS (map rsimp rs)")
    apply(simp only:)
  prefer 2
  apply simp
   prefer 2
  using rsimp_ALTs.simps(3) apply presburger
  apply auto
  apply(subst rsimp_idem)+
  by (metis comp_apply rsimp_idem)

lemma spawn_simp_distinct:
  shows "rsimp (rsimp_ALTs (rsa @ (rdistinct rs (set rsa)))) = rsimp (rsimp_ALTs (rsa @ rs))
\<and> (a1 \<in> set rsa1 \<longrightarrow> rsimp (rsimp_ALTs (rsa1 @ rs)) = rsimp (rsimp_ALTs (rsa1 @ a1 # rs)))
\<and> rsimp  (rsimp_ALTs (rsc @ rs)) = rsimp (rsimp_ALTs (rsc @ (rdistinct rs (set rsc))))"
  apply(induct rs arbitrary: rsa rsa1 a1 rsc)
   apply simp
   apply(subgoal_tac "rsimp (rsimp_ALTs (rsa1 @ [a1])) = rsimp (rsimp_ALTs (rsa1 @ (rdistinct [a1] (set rsa1))))")
  prefer 2
  



  oops

lemma inv_one_derx:
  shows " RONE = rder xa r2 \<Longrightarrow> r2 = RCHAR xa"
  apply(case_tac r2)
       apply simp+
  
  using rrexp.distinct(1) apply presburger
    apply (metis rder.simps(5) rrexp.distinct(13) rrexp.simps(20))
  
   apply simp+
  done

lemma shape_of_derseq:
  shows "rder x (RSEQ r1 r2) = RSEQ (rder x r1) r2 \<or> rder x (RSEQ r1 r2) = (RALT (RSEQ (rder x r1) r2) (rder x r2))"
  using rder.simps(5) by presburger
lemma shape_of_derseq2:
  shows "rder x (RSEQ r11 r12) = RSEQ x41 x42 \<Longrightarrow> x41 = rder x r11"
  by (metis rrexp.distinct(25) rrexp.inject(2) shape_of_derseq)

lemma alts_preimage_case1:
  shows "rder x r = RALTS [r] \<Longrightarrow> \<exists>ra. r = RALTS [ra]"
  apply(case_tac r)
       apply simp+
  apply (metis rrexp.simps(12) rrexp.simps(20))
  apply (metis rrexp.inject(3) rrexp.simps(30) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3) shape_of_derseq)
   apply auto[1]
  by auto

lemma alts_preimage_case2:
  shows "rder x r = RALT r1 r2 \<Longrightarrow> \<exists>ra rb. (r = RSEQ ra rb \<or> r = RALT ra rb)"
  apply(case_tac r)
       apply simp+
  apply (metis rrexp.distinct(15) rrexp.distinct(7))
    apply simp
  apply auto[1]
  by auto

lemma alts_preimage_case2_2:
  shows "rder x r = RALT r1 r2 \<Longrightarrow> (\<exists>ra rb. r = RSEQ ra rb) \<or> (\<exists>rc rd. r = RALT rc rd)"
  using alts_preimage_case2 by blast

lemma alts_preimage_case3:
  shows "rder x r = RALT r1 r2 \<Longrightarrow>  (\<exists>ra rb. r = RSEQ ra rb) \<or> (\<exists>rcs rc rd. r = RALTS rcs \<and> rcs = [rc, rd])"
  using alts_preimage_case2 by blast

lemma star_seq:
  shows "rder x (RSEQ (RSTAR a) b) = RALT (RSEQ (RSEQ (rder x a) (RSTAR a)) b) (rder x b)"
  using rder.simps(5) rder.simps(6) rnullable.simps(6) by presburger

lemma language_equality_id1:
  shows "\<not>rnullable a \<Longrightarrow> rder x (RSEQ (RSTAR a) b) = rder x (RALT (RSEQ (RSEQ a (RSTAR a)) b) b)"
  apply (subst star_seq)
  apply simp
  done

  


lemma alts_preimage_cases:
  shows "rder x r = RALT (RSEQ r1 r2) r3 \<Longrightarrow> (\<exists>ra rb. r = RSEQ ra rb) \<or> (\<exists>rc rd re. r = RALT (RSEQ rc rd) re)"
  apply(case_tac r)
       apply simp+
  
  apply (metis rrexp.simps(12) rrexp.simps(20))
    prefer 3
  apply simp
  apply blast
  apply(frule alts_preimage_case2_2)
  apply(case_tac "(\<exists>ra rb. r = RSEQ ra rb)")
   apply blast
  apply(subgoal_tac " (\<exists> rc rd. r = RALT rc rd )")
  prefer 2
   apply blast
  apply(erule exE)+
  apply(subgoal_tac "rder x r = RALT (rder x rc) (rder x rd)")
  prefer 2
  apply force
  apply(subgoal_tac "rder x rc = RSEQ r1 r2")
  oops


lemma der_seq_eq_case:
  shows "\<lbrakk>r1 \<noteq> r2 ; r1 = RSEQ ra rb; rder x r1 = rder x r2\<rbrakk> \<Longrightarrow> rsimp (rder x r1) =  RZERO \<and> rsimp (rder x r2) = RZERO"
  apply(case_tac "rnullable ra")
  apply simp
  oops

  
  

lemma der_map_unequal_to_equal_zero_only:
  shows "\<lbrakk>r1 \<noteq> r2 ; rder x r1 = rder x r2 \<rbrakk> \<Longrightarrow> rsimp (rder x r1) = RZERO"
  apply(induct r1)
       apply simp
      apply simp
     apply simp
     apply(case_tac "x = xa")
      apply simp
      apply(subgoal_tac "r2 = RCHAR xa")
  prefer 2
  using inv_one_derx apply blast
      apply simp
  using rsimp.simps(3) apply presburger
    apply(case_tac "rder x (RSEQ r11 r12)")
         apply simp
        apply (metis inv_one_derx)
       apply (metis rrexp.distinct(21) rrexp.simps(24) shape_of_derseq)
      apply(subgoal_tac "rder x r2 = RSEQ x41 x42")
  prefer 2
       apply presburger
      apply(subgoal_tac "x41 = rder x r11")
       prefer 2
       apply (meson shape_of_derseq2)
      apply(case_tac r2)
           apply simp+
  apply (metis rrexp.distinct(13) rrexp.simps(10))
        apply(subgoal_tac "x42a = x42")
  prefer 2
  apply (metis rrexp.inject(2) rrexp.simps(30) shape_of_derseq)
  apply(subgoal_tac "rder x x41a =  x41")
        prefer 2 
  apply (metis shape_of_derseq2)
        apply(simp)
        apply(subgoal_tac "\<not> rnullable r11")
  prefer 2
  apply force
        apply simp
        apply(subgoal_tac "\<not> rnullable x41a")
  prefer 2
         apply force
        apply simp
  
  oops



lemma der_maps_1to1_except0:
  shows "\<lbrakk>rder x ` rset = dset; a \<notin> rset; rder x a \<in> dset\<rbrakk> \<Longrightarrow> rsimp (rder x a) = RZERO"
  

  sorry

lemma distinct_der_set:
  shows "(rder x) ` rset = dset \<Longrightarrow>
rsimp (rsimp_ALTs (map (rder x) (rdistinct rs rset))) = rsimp ( rsimp_ALTs (rdistinct (map (rder x) rs) dset))"
  apply(induct rs arbitrary: rset dset)
   apply simp
  apply(case_tac "a \<in> rset")
   apply(subgoal_tac "rder x a \<in> dset")
  prefer 2
    apply blast
   apply simp
  apply(case_tac "rder x a \<notin> dset")
   prefer 2
   apply simp
 
  oops

lemma map_concat_cons:
  shows "map f rsa @ f a # rs = map f (rsa @ [a]) @ rs"
  by simp

lemma neg_removal_element_of:
  shows " \<not> a \<notin> aset \<Longrightarrow> a \<in> aset"
  by simp

lemma simp_more_flts:
  shows "rsimp (rsimp_ALTs (rdistinct rs {})) = rsimp (rsimp_ALTs (rdistinct (rflts rs) {}))"

  oops



lemma simp_more_distinct:
  shows "rsimp  (rsimp_ALTs (rsa @ rs)) = rsimp (rsimp_ALTs (rsa @ (rdistinct rs (set rsa)))) \<and>
  rsimp (rsimp_ALTs (rsb @ (rdistinct rs (set rsb)))) = 
  rsimp (rsimp_ALTs (rsb @ (rdistinct (rflts rs) (set rsb))))"
  apply(induct rs arbitrary: rsa rsb)
   apply simp

  sorry

lemma non_empty_list:
  shows "a \<in> set as \<Longrightarrow> as \<noteq> []"
  
  by (metis empty_iff empty_set)


lemma distinct_removes_last:
  shows "\<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as)\<rbrakk>
    \<Longrightarrow> rsimp_ALTs (rdistinct (rflts (map rsimp as @ [rsimp a])) {}) =
        rsimp_ALTs (rdistinct (rflts (map rsimp as)) {})"
  apply(induct "rsimp a" arbitrary: as)
       apply(simp)
       apply (metis append.right_neutral append_self_conv2 empty_set list.simps(9) map_append rflts.simps(2) rsimp.simps(2) rsimp_idem simp_more_distinct spawn_simp_rsimpalts)
  apply simp
  sorry

lemma flts_identity1:
  shows  "rflts (rs @ [RONE]) = rflts rs @ [RONE] "
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp
      apply simp+
  done

lemma flts_identity10:
  shows " rflts (rs @ [RCHAR c]) = rflts rs @ [RCHAR c]"
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp+
  done

lemma flts_identity11:
  shows " rflts (rs @ [RSEQ r1 r2]) = rflts rs @ [RSEQ r1 r2]"
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp+
  done

lemma flts_identity12:
  shows " rflts (rs @ [RSTAR r0]) = rflts rs @ [RSTAR r0]"
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp+
  done

lemma flts_identity2:
  shows "a \<noteq> RZERO \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow>  rflts (rs @ [a]) = rflts rs @ [a]"
  apply(case_tac a)
       apply simp
  using flts_identity1 apply auto[1]
  using flts_identity10 apply blast
  using flts_identity11 apply auto[1]
   apply blast
  using flts_identity12 by presburger
  

lemma last_elem_dup1:
  shows " a \<in> set as \<Longrightarrow> rsimp (RALTS (as @ [a] )) = rsimp (RALTS (as ))"
  apply simp
  apply(subgoal_tac "rsimp a \<in> set (map rsimp as)")
  prefer 2
   apply simp

  sorry

lemma last_elem_dup:
  shows " a \<in> set as \<Longrightarrow> rsimp (rsimp_ALTs (as @ [a] )) = rsimp (rsimp_ALTs (as ))"
  apply(induct as rule: rev_induct)
   apply simp
  apply simp
  apply(subgoal_tac "xs \<noteq> []")
  prefer 2
  

  

  sorry

lemma appeared_before_remove_later:
  shows "a \<in>  set as \<Longrightarrow> rsimp (rsimp_ALTs ( as @ a # rs)) = rsimp (rsimp_ALTs (as @ rs))"
and "a \<in> set as \<Longrightarrow> rsimp (rsimp_ALTs as ) = rsimp (rsimp_ALTs (as @ [a]))"
  apply(induct rs arbitrary: as)
   apply simp
  

  sorry

lemma distinct_remove_later:
  shows "\<lbrakk>rder x a \<in> rder x ` set rsa\<rbrakk>
       \<Longrightarrow> rsimp (rsimp_ALTs (map (rder x) rsa @ rder x a # map (rder x) (rdistinct rs (insert a (set rsa))))) =
           rsimp (rsimp_ALTs (map (rder x) rsa @ map (rder x) (rdistinct rs (set rsa))))"
  
  sorry


lemma distinct_der_general:
  shows "rsimp (rsimp_ALTs (map (rder x) (rsa @ (rdistinct rs (set rsa))))) =
 rsimp ( rsimp_ALTs ((map (rder x) rsa)@(rdistinct (map (rder x) rs) (set (map (rder x) rsa)))) )"
  apply(induct rs arbitrary: rsa)
   apply simp
  apply(case_tac "a \<in> set rsa")
   apply(subgoal_tac "rder x a \<in> set (map (rder x) rsa)")
  apply simp
   apply simp
  apply(case_tac "rder x a \<notin> set (map (rder x) rsa)")
   apply(simp)
  apply(subst map_concat_cons)+
  apply(drule_tac x = "rsa @ [a]" in meta_spec)
   apply simp
  apply(drule neg_removal_element_of)
  apply simp
  apply(subst distinct_remove_later)
   apply simp
  apply(drule_tac x = "rsa" in meta_spec)
  by blast

  


lemma distinct_der:
  shows "rsimp (rsimp_ALTs (map (rder x) (rdistinct rs {}))) = rsimp ( rsimp_ALTs (rdistinct (map (rder x) rs) {}))"
  by (metis distinct_der_general list.simps(8) self_append_conv2 set_empty)

  


lemma rders_simp_lambda:
  shows " rsimp \<circ> rder x \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r (xs @ [x]))"
  using rders_simp_append by auto

lemma rders_simp_nonempty_simped:
  shows "xs \<noteq> [] \<Longrightarrow> rsimp \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r xs)"
  using rders_simp_same_simpders rsimp_idem by auto

lemma repeated_altssimp:
  shows "\<forall>r \<in> set rs. rsimp r = r \<Longrightarrow> rsimp (rsimp_ALTs (rdistinct (rflts rs) {})) =
           rsimp_ALTs (rdistinct (rflts rs) {})"
  by (metis map_idI rsimp.simps(2) rsimp_idem)

lemma alts_closed_form: shows 
"rsimp (rders_simp (RALTS rs) s) = 
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
  apply(induct s rule: rev_induct)
   apply simp
  apply simp
  apply(subst rders_simp_append)
  apply(subgoal_tac " rsimp (rders_simp (rders_simp (RALTS rs) xs) [x]) = 
 rsimp(rders_simp (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})) [x])")
   prefer 2
  apply (metis inside_simp_removal rders_simp_one_char)
  apply(simp only: )
  apply(subst rders_simp_one_char)
  apply(subst rsimp_idem)
  apply(subgoal_tac "rsimp (rder x (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {}))) =
                     rsimp ((rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))) ")
  prefer 2
  using rder_rsimp_ALTs_commute apply presburger
  apply(simp only:)
  apply(subgoal_tac "rsimp (rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))
= rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
   prefer 2
  
  using distinct_der apply presburger
  apply(simp only:)
  apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
                      rsimp (rsimp_ALTs (rdistinct ( (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)))) {}))")
   apply(simp only:)
  apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) = 
                      rsimp (rsimp_ALTs (rdistinct (rflts ( (map (rsimp \<circ> (rder x) \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
    apply(simp only:)
  apply(subst rders_simp_lambda)
    apply(subst rders_simp_nonempty_simped)
     apply simp
    apply(subgoal_tac "\<forall>r \<in> set  (map (\<lambda>r. rders_simp r (xs @ [x])) rs). rsimp r = r")
  prefer 2
     apply (simp add: rders_simp_same_simpders rsimp_idem)
    apply(subst repeated_altssimp)
     apply simp
  apply fastforce
  apply (metis inside_simp_removal list.map_comp rder.simps(4) rsimp.simps(2) rsimp_idem)
  
(*  apply (metis head_one_more_simp list.inject list.map_comp list.simps(9) rders_simp_lambda rsimp.simps(2))
*)

  sorry

lemma alts_closed_form_variant: shows 
"s \<noteq> [] \<Longrightarrow> rders_simp (RALTS rs) s = 
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
  sorry



lemma star_closed_form:
  shows "rders_simp (RSTAR r0) (c#s) = 
rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))"
  apply(induct s)
   apply simp
  sorry



lemma seq_closed_form: shows 
"rsimp (rders_simp (RSEQ r1 r2) s) = 
rsimp ( RALTS ( (RSEQ (rders_simp r1 s) r2) # 
                (map (rders_simp r2) (vsuf s r1)) 
              )  
      )"
  apply(induct s)
  apply simp
  sorry


lemma seq_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> (rders_simp (RSEQ r1 r2) s) = 
rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))"
  apply(induct s rule: rev_induct)
   apply simp
  apply(subst rders_simp_append)
  apply(subst rders_simp_one_char)
  apply(subst rsimp_idem[symmetric])
  apply(subst rders_simp_one_char[symmetric])
  apply(subst rders_simp_append[symmetric])
  apply(insert seq_closed_form)
  apply(subgoal_tac "rsimp (rders_simp (RSEQ r1 r2) (xs @ [x]))
 = rsimp (RALTS (RSEQ (rders_simp r1 (xs @ [x])) r2 # map (rders_simp r2) (vsuf (xs @ [x]) r1)))")
   apply force
  by presburger

end