theory ClosedForms imports
"BasicIdentities"
begin
lemma map_concat_cons:
shows "map f rsa @ f a # rs = map f (rsa @ [a]) @ rs"
by simp
lemma neg_removal_element_of:
shows " \<not> a \<notin> aset \<Longrightarrow> a \<in> aset"
by simp
lemma flts_middle0:
shows "rflts (rsa @ RZERO # rsb) = rflts (rsa @ rsb)"
apply(induct rsa)
apply simp
by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
lemma flts_middle01:
shows "rflts (rsa @ [RZERO] @ rsb) = rflts (rsa @ rsb)"
by (simp add: flts_middle0)
lemma flts_append1:
shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk> \<Longrightarrow>
rflts (rsa @ [a] @ rsb) = rflts rsa @ [a] @ (rflts rsb)"
apply(induct rsa arbitrary: rsb)
apply simp
using rflts_def_idiot apply presburger
apply(case_tac aa)
apply simp+
done
lemma simp_removes_duplicate1:
shows " a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a])) = rsimp (RALTS (rsa))"
and " rsimp (RALTS (a1 # rsa @ [a1])) = rsimp (RALTS (a1 # rsa))"
apply(induct rsa arbitrary: a1)
apply simp
apply simp
prefer 2
apply(case_tac "a = aa")
apply simp
apply simp
apply (metis Cons_eq_appendI Cons_eq_map_conv distinct_removes_duplicate_flts list.set_intros(2))
apply (metis append_Cons append_Nil distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9))
by (metis (mono_tags, lifting) append_Cons distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9) map_append rsimp.simps(2))
lemma simp_removes_duplicate2:
shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a] @ rsb)) = rsimp (RALTS (rsa @ rsb))"
apply(induct rsb arbitrary: rsa)
apply simp
using distinct_removes_duplicate_flts apply auto[1]
by (metis append.assoc head_one_more_simp rsimp.simps(2) simp_flatten simp_removes_duplicate1(1))
lemma simp_removes_duplicate3:
shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ a # rsb)) = rsimp (RALTS (rsa @ rsb))"
using simp_removes_duplicate2 by auto
lemma distinct_removes_middle4:
shows "a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ [a] @ rsb) rset = rdistinct (rsa @ rsb) rset"
using distinct_removes_middle(1) by fastforce
lemma distinct_removes_middle_list:
shows "\<forall>a \<in> set x. a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ x @ rsb) rset = rdistinct (rsa @ rsb) rset"
apply(induct x)
apply simp
by (simp add: distinct_removes_middle3)
lemma distinct_removes_duplicate_flts2:
shows " a \<in> set rsa
\<Longrightarrow> rdistinct (rflts (rsa @ [a] @ rsb)) {} =
rdistinct (rflts (rsa @ rsb)) {}"
apply(induct a arbitrary: rsb)
using flts_middle01 apply presburger
apply(subgoal_tac "rflts (rsa @ [RONE] @ rsb) = rflts rsa @ [RONE] @ rflts rsb")
prefer 2
using flts_append1 apply blast
apply simp
apply(subgoal_tac "RONE \<in> set (rflts rsa)")
prefer 2
using rflts_def_idiot2 apply blast
apply(subst distinct_removes_middle3)
apply simp
using flts_append apply presburger
apply simp
apply (metis distinct_removes_middle3 flts_append in_set_conv_decomp rflts.simps(5))
apply (metis distinct_removes_middle(1) flts_append flts_append1 rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(5))
apply(subgoal_tac "rflts (rsa @ [RALTS x] @ rsb) = rflts rsa @ x @ rflts rsb")
prefer 2
apply (simp add: flts_append)
apply (simp only:)
apply(subgoal_tac "\<forall>r1 \<in> set x. r1 \<in> set (rflts rsa)")
prefer 2
using spilled_alts_contained apply blast
apply(subst flts_append)
using distinct_removes_middle_list apply blast
using distinct_removes_middle2 flts_append rflts_def_idiot2 by fastforce
lemma simp_removes_duplicate:
shows "a \<in> set rsa \<Longrightarrow> rsimp (rsimp_ALTs (rsa @ a # rs)) = rsimp (rsimp_ALTs (rsa @ rs))"
apply(subgoal_tac "rsimp (rsimp_ALTs (rsa @ a # rs)) = rsimp (RALTS (rsa @ a # rs))")
prefer 2
apply (smt (verit, best) Cons_eq_append_conv append_is_Nil_conv empty_set equals0D list.distinct(1) rsimp_ALTs.elims)
apply(simp only:)
apply simp
apply(subgoal_tac "(rdistinct (rflts (map rsimp rsa @ rsimp a # map rsimp rs)) {}) = (rdistinct (rflts (map rsimp rsa @ map rsimp rs)) {})")
apply(simp only:)
prefer 2
apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)")
prefer 2
apply simp
using distinct_removes_duplicate_flts2 apply force
apply(case_tac rsa)
apply simp
apply(case_tac rs)
apply simp
apply(case_tac list)
apply simp
using idem_after_simp1 apply presburger
apply simp+
apply(subgoal_tac "rsimp_ALTs (aa # list @ aaa # lista) = RALTS (aa # list @ aaa # lista)")
apply simp
using rsimpalts_conscons by presburger
inductive frewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f _" [10, 10] 10)
where
"(RZERO # rs) \<leadsto>f rs"
| "((RALTS rs) # rsa) \<leadsto>f (rs @ rsa)"
| "rs1 \<leadsto>f rs2 \<Longrightarrow> (r # rs1) \<leadsto>f (r # rs2)"
inductive
frewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f* _" [10, 10] 10)
where
[intro, simp]:"rs \<leadsto>f* rs"
| [intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>f* rs3"
inductive grewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g _" [10, 10] 10)
where
"(RZERO # rs) \<leadsto>g rs"
| "((RALTS rs) # rsa) \<leadsto>g (rs @ rsa)"
| "rs1 \<leadsto>g rs2 \<Longrightarrow> (r # rs1) \<leadsto>g (r # rs2)"
| "rsa @ [a] @ rsb @ [a] @ rsc \<leadsto>g rsa @ [a] @ rsb @ rsc"
lemma grewrite_variant1:
shows "a \<in> set rs1 \<Longrightarrow> rs1 @ a # rs \<leadsto>g rs1 @ rs"
apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first)
done
inductive
grewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g* _" [10, 10] 10)
where
[intro, simp]:"rs \<leadsto>g* rs"
| [intro]: "\<lbrakk>rs1 \<leadsto>g* rs2; rs2 \<leadsto>g rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>g* rs3"
(*
inductive
frewrites2:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ <\<leadsto>f* _" [10, 10] 10)
where
[intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f* rs1\<rbrakk> \<Longrightarrow> rs1 <\<leadsto>f* rs2"
*)
lemma fr_in_rstar : "r1 \<leadsto>f r2 \<Longrightarrow> r1 \<leadsto>f* r2"
using frewrites.intros(1) frewrites.intros(2) by blast
lemma freal_trans[trans]:
assumes a1: "r1 \<leadsto>f* r2" and a2: "r2 \<leadsto>f* r3"
shows "r1 \<leadsto>f* r3"
using a2 a1
apply(induct r2 r3 arbitrary: r1 rule: frewrites.induct)
apply(auto)
done
lemma many_steps_later: "\<lbrakk>r1 \<leadsto>f r2; r2 \<leadsto>f* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>f* r3"
by (meson fr_in_rstar freal_trans)
lemma gr_in_rstar : "r1 \<leadsto>g r2 \<Longrightarrow> r1 \<leadsto>g* r2"
using grewrites.intros(1) grewrites.intros(2) by blast
lemma greal_trans[trans]:
assumes a1: "r1 \<leadsto>g* r2" and a2: "r2 \<leadsto>g* r3"
shows "r1 \<leadsto>g* r3"
using a2 a1
apply(induct r2 r3 arbitrary: r1 rule: grewrites.induct)
apply(auto)
done
lemma gmany_steps_later: "\<lbrakk>r1 \<leadsto>g r2; r2 \<leadsto>g* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>g* r3"
by (meson gr_in_rstar greal_trans)
lemma gstar_rdistinct_general:
shows "rs1 @ rs \<leadsto>g* rs1 @ (rdistinct rs (set rs1))"
apply(induct rs arbitrary: rs1)
apply simp
apply(case_tac " a \<in> set rs1")
apply simp
apply(subgoal_tac "rs1 @ a # rs \<leadsto>g rs1 @ rs")
using gmany_steps_later apply auto[1]
apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first)
apply simp
apply(drule_tac x = "rs1 @ [a]" in meta_spec)
by simp
lemma gstar_rdistinct:
shows "rs \<leadsto>g* rdistinct rs {}"
apply(induct rs)
apply simp
by (metis append.left_neutral empty_set gstar_rdistinct_general)
lemma frewrite_append:
shows "\<lbrakk> rsa \<leadsto>f rsb \<rbrakk> \<Longrightarrow> rs @ rsa \<leadsto>f rs @ rsb"
apply(induct rs)
apply simp+
using frewrite.intros(3) by blast
lemma grewrite_append:
shows "\<lbrakk> rsa \<leadsto>g rsb \<rbrakk> \<Longrightarrow> rs @ rsa \<leadsto>g rs @ rsb"
apply(induct rs)
apply simp+
using grewrite.intros(3) by blast
lemma frewrites_cons:
shows "\<lbrakk> rsa \<leadsto>f* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>f* r # rsb"
apply(induct rsa rsb rule: frewrites.induct)
apply simp
using frewrite.intros(3) by blast
lemma grewrites_cons:
shows "\<lbrakk> rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>g* r # rsb"
apply(induct rsa rsb rule: grewrites.induct)
apply simp
using grewrite.intros(3) by blast
lemma frewrites_append:
shows " \<lbrakk>rsa \<leadsto>f* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>f* (rs @ rsb)"
apply(induct rs)
apply simp
by (simp add: frewrites_cons)
lemma grewrites_append:
shows " \<lbrakk>rsa \<leadsto>g* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>g* (rs @ rsb)"
apply(induct rs)
apply simp
by (simp add: grewrites_cons)
lemma frewrites_concat:
shows "\<lbrakk>rs1 \<leadsto>f rs2; rsa \<leadsto>f* rsb \<rbrakk> \<Longrightarrow> (rs1 @ rsa) \<leadsto>f* (rs2 @ rsb)"
apply(induct rs1 rs2 rule: frewrite.induct)
apply(simp)
apply(subgoal_tac "(RZERO # rs @ rsa) \<leadsto>f (rs @ rsa)")
prefer 2
using frewrite.intros(1) apply blast
apply(subgoal_tac "(rs @ rsa) \<leadsto>f* (rs @ rsb)")
using many_steps_later apply blast
apply (simp add: frewrites_append)
apply (metis append.assoc append_Cons frewrite.intros(2) frewrites_append many_steps_later)
using frewrites_cons by auto
lemma grewrites_concat:
shows "\<lbrakk>rs1 \<leadsto>g rs2; rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> (rs1 @ rsa) \<leadsto>g* (rs2 @ rsb)"
apply(induct rs1 rs2 rule: grewrite.induct)
apply(simp)
apply(subgoal_tac "(RZERO # rs @ rsa) \<leadsto>g (rs @ rsa)")
prefer 2
using grewrite.intros(1) apply blast
apply(subgoal_tac "(rs @ rsa) \<leadsto>g* (rs @ rsb)")
using gmany_steps_later apply blast
apply (simp add: grewrites_append)
apply (metis append.assoc append_Cons grewrite.intros(2) grewrites_append gmany_steps_later)
using grewrites_cons apply auto
apply(subgoal_tac "rsaa @ a # rsba @ a # rsc @ rsa \<leadsto>g* rsaa @ a # rsba @ a # rsc @ rsb")
using grewrite.intros(4) grewrites.intros(2) apply force
using grewrites_append by auto
lemma grewritess_concat:
shows "\<lbrakk>rsa \<leadsto>g* rsb; rsc \<leadsto>g* rsd \<rbrakk> \<Longrightarrow> (rsa @ rsc) \<leadsto>g* (rsb @ rsd)"
apply(induct rsa rsb rule: grewrites.induct)
apply(case_tac rs)
apply simp
using grewrites_append apply blast
by (meson greal_trans grewrites.simps grewrites_concat)
fun alt_set:: "rrexp \<Rightarrow> rrexp set"
where
"alt_set (RALTS rs) = set rs \<union> \<Union> (alt_set ` (set rs))"
| "alt_set r = {r}"
lemma alt_set_has_all:
shows "RALTS rs \<in> alt_set rx \<Longrightarrow> set rs \<subseteq> alt_set rx"
apply(induct rx arbitrary: rs)
apply simp_all
apply(rename_tac rSS rss)
using in_mono by fastforce
lemma grewrite_equal_rsimp:
shows "\<lbrakk>rs1 \<leadsto>g rs2; rsimp_ALTs (rdistinct (rflts (map rsimp rs1)) (rset \<union> \<Union>(alt_set ` rset))) =
rsimp_ALTs (rdistinct (rflts (map rsimp rs2)) (rset \<union> \<Union>(alt_set ` rset)))\<rbrakk>
\<Longrightarrow> rsimp_ALTs (rdistinct (rflts (rsimp r # map rsimp rs1)) (rset \<union> \<Union>(alt_set ` rset))) =
rsimp_ALTs (rdistinct (rflts (rsimp r # map rsimp rs2)) (rset \<union> \<Union>(alt_set ` rset)))"
apply(induct rs1 rs2 arbitrary:rset rule: grewrite.induct)
apply simp
apply (metis append_Cons append_Nil flts_middle0)
apply(case_tac "rsimp r \<in> rset")
apply simp
oops
lemma grewrite_cases_middle:
shows "rs1 \<leadsto>g rs2 \<Longrightarrow>
(\<exists>rsa rsb rsc. rs1 = (rsa @ [RALTS rsb] @ rsc) \<and> rs2 = (rsa @ rsb @ rsc)) \<or>
(\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc) \<or>
(\<exists>rsa rsb rsc a. rs1 = rsa @ [a] @ rsb @ [a] @ rsc \<and> rs2 = rsa @ [a] @ rsb @ rsc)"
apply( induct rs1 rs2 rule: grewrite.induct)
apply simp
apply blast
apply (metis append_Cons append_Nil)
apply (metis append_Cons)
by blast
lemma grewrite_equal_rsimp:
shows "rs1 \<leadsto>g rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
apply(frule grewrite_cases_middle)
apply(case_tac "(\<exists>rsa rsb rsc. rs1 = rsa @ [RALTS rsb] @ rsc \<and> rs2 = rsa @ rsb @ rsc)")
using simp_flatten3 apply auto[1]
apply(case_tac "(\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc)")
apply (metis (mono_tags, opaque_lifting) append_Cons append_Nil list.set_intros(1) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) simp_removes_duplicate3)
by (smt (verit) append.assoc append_Cons append_Nil in_set_conv_decomp simp_removes_duplicate3)
lemma grewrites_equal_rsimp:
shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
apply (induct rs1 rs2 rule: grewrites.induct)
apply simp
using grewrite_equal_rsimp by presburger
lemma grewrites_equal_simp_2:
shows "rsimp (RALTS rs1) = rsimp (RALTS rs2) \<Longrightarrow> rs1 \<leadsto>g* rs2"
oops
lemma grewrites_last:
shows "r # [RALTS rs] \<leadsto>g* r # rs"
by (metis gr_in_rstar grewrite.intros(2) grewrite.intros(3) self_append_conv)
lemma simp_flatten2:
shows "rsimp (RALTS (r # [RALTS rs])) = rsimp (RALTS (r # rs))"
using grewrites_equal_rsimp grewrites_last by blast
lemma frewrites_middle:
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> r # (RALTS rs # rs1) \<leadsto>f* r # (rs @ rs1)"
by (simp add: fr_in_rstar frewrite.intros(2) frewrite.intros(3))
lemma frewrites_alt:
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> (RALT r1 r2) # rs1 \<leadsto>f* r1 # r2 # rs2"
by (metis Cons_eq_appendI append_self_conv2 frewrite.intros(2) frewrites_cons many_steps_later)
lemma early_late_der_frewrites:
shows "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)"
apply(induct rs)
apply simp
apply(case_tac a)
apply simp+
using frewrite.intros(1) many_steps_later apply blast
apply(case_tac "x = x3")
apply simp
using frewrites_cons apply presburger
using frewrite.intros(1) many_steps_later apply fastforce
apply(case_tac "rnullable x41")
apply simp+
apply (simp add: frewrites_alt)
apply (simp add: frewrites_cons)
apply (simp add: frewrites_append)
by (simp add: frewrites_cons)
lemma with_wo0_distinct:
shows "rdistinct rs rset \<leadsto>f* rdistinct rs (insert RZERO rset)"
apply(induct rs arbitrary: rset)
apply simp
apply(case_tac a)
apply(case_tac "RZERO \<in> rset")
apply simp+
using fr_in_rstar frewrite.intros(1) apply presburger
apply (case_tac "RONE \<in> rset")
apply simp+
using frewrites_cons apply presburger
apply(case_tac "a \<in> rset")
apply simp
apply (simp add: frewrites_cons)
apply(case_tac "a \<in> rset")
apply simp
apply (simp add: frewrites_cons)
apply(case_tac "a \<in> rset")
apply simp
apply (simp add: frewrites_cons)
apply(case_tac "a \<in> rset")
apply simp
apply (simp add: frewrites_cons)
done
(*Interesting lemma: not obvious but easily proven by sledgehammer*)
(*lemma induction last rule not go through
example:
r #
rdistinct rs1
(insert RZERO
(insert r
(rset \<union>
\<Union> (alt_set `
rset)))) \<leadsto>g* r #
rdistinct rs2
(insert RZERO (insert r (rset \<union> \<Union> (alt_set ` rset))))
rs2 = [+rs] rs3 = rs,
r = +rs
[] \<leadsto>g* rs which is wrong
*)
lemma frewrite_simpeq:
shows "rs1 \<leadsto>f rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
apply(induct rs1 rs2 rule: frewrite.induct)
apply simp
using simp_flatten apply presburger
by (metis (no_types, opaque_lifting) grewrites_equal_rsimp grewrites_last list.simps(9) rsimp.simps(2))
lemma gstar0:
shows "rsa @ (rdistinct rs (set rsa)) \<leadsto>g* rsa @ (rdistinct rs (insert RZERO (set rsa)))"
apply(induct rs arbitrary: rsa)
apply simp
apply(case_tac "a = RZERO")
apply simp
using gr_in_rstar grewrite.intros(1) grewrites_append apply presburger
apply(case_tac "a \<in> set rsa")
apply simp+
apply(drule_tac x = "rsa @ [a]" in meta_spec)
by simp
lemma gstar01:
shows "rdistinct rs {} \<leadsto>g* rdistinct rs {RZERO}"
by (metis empty_set gstar0 self_append_conv2)
lemma grewrite_rdistinct_aux:
shows "rs @ rdistinct rsa rset \<leadsto>g* rs @ rdistinct rsa (rset \<union> set rs)"
apply(induct rsa arbitrary: rs rset)
apply simp
apply(case_tac " a \<in> rset")
apply simp
apply(case_tac "a \<in> set rs")
apply simp
apply (metis Un_insert_left Un_insert_right gmany_steps_later grewrite_variant1 insert_absorb)
apply simp
apply(drule_tac x = "rs @ [a]" in meta_spec)
by (metis Un_insert_left Un_insert_right append.assoc append.right_neutral append_Cons append_Nil insert_absorb2 list.simps(15) set_append)
lemma grewrite_rdistinct_worth1:
shows "(rsb @ [a]) @ rdistinct rs set1 \<leadsto>g* (rsb @ [a]) @ rdistinct rs (insert a set1)"
by (metis append.assoc empty_set grewrite_rdistinct_aux grewrites_append inf_sup_aci(5) insert_is_Un list.simps(15))
lemma grewrite_rdisitinct:
shows "rs @ rdistinct rsa {RALTS rs} \<leadsto>g* rs @ rdistinct rsa (insert (RALTS rs) (set rs))"
apply(induct rsa arbitrary: rs)
apply simp
apply(case_tac "a = RALTS rs")
apply simp
apply(case_tac "a \<in> set rs")
apply simp
apply(subgoal_tac "rs @
a # rdistinct rsa {RALTS rs, a} \<leadsto>g rs @ rdistinct rsa {RALTS rs, a}")
apply(subgoal_tac
"rs @ rdistinct rsa {RALTS rs, a} \<leadsto>g* rs @ rdistinct rsa (insert (RALTS rs) (set rs))")
using gmany_steps_later apply blast
apply(subgoal_tac
" rs @ rdistinct rsa {RALTS rs, a} \<leadsto>g* rs @ rdistinct rsa ({RALTS rs, a} \<union> set rs)")
apply (simp add: insert_absorb)
using grewrite_rdistinct_aux apply blast
using grewrite_variant1 apply blast
by (metis grewrite_rdistinct_aux insert_is_Un)
lemma frewrite_rd_grewrites_general:
shows "\<lbrakk>rs1 \<leadsto>f rs2; \<And>rs. \<exists>rs3.
(rs @ (rdistinct rs1 (set rs)) \<leadsto>g* rs3) \<and> (rs @ (rdistinct rs2 (set rs)) \<leadsto>g* rs3)\<rbrakk>
\<Longrightarrow>
\<exists>rs3. (rs @ (r # rdistinct rs1 (set rs \<union> {r})) \<leadsto>g* rs3) \<and> (rs @ (r # rdistinct rs2 (set rs \<union> {r})) \<leadsto>g* rs3)"
apply(drule_tac x = "rs @ [r]" in meta_spec )
by simp
lemma alts_g_can_flts:
shows "RALTS rs \<in> set rsb \<Longrightarrow> \<exists>rs1 rs2.( rflts rsb = rs1 @ rs @ rs2)"
by (metis flts_append rflts.simps(3) split_list_last)
lemma flts_gstar:
shows "rs \<leadsto>g* rflts rs"
apply(induct rs)
apply simp
apply(case_tac "a = RZERO")
apply simp
using gmany_steps_later grewrite.intros(1) apply blast
apply(case_tac "\<exists>rsa. a = RALTS rsa")
apply(erule exE)
apply simp
apply (meson grewrite.intros(2) grewrites.simps grewrites_cons)
by (simp add: grewrites_cons rflts_def_idiot)
lemma wrong1:
shows "a \<in> set rs1 \<Longrightarrow> rs1 @ (rdistinct rs (insert a rset)) \<leadsto>g* rs1 @ (rdistinct rs (rset))"
oops
lemma more_distinct1:
shows " \<lbrakk>\<And>rsb rset rset2.
rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2);
rset2 \<subseteq> set rsb; a \<notin> rset; a \<in> rset2\<rbrakk>
\<Longrightarrow> rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)"
apply(subgoal_tac "rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (insert a rset)")
apply(subgoal_tac "rsb @ rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)")
apply (meson greal_trans)
apply (metis Un_iff Un_insert_left insert_absorb)
by (simp add: gr_in_rstar grewrite_variant1 in_mono)
lemma grewrites_in_distinct0:
shows "a \<in> set rs1 \<Longrightarrow> rs1 @ (rdistinct (a # rs) rset) \<leadsto>g* rs1 @ (rdistinct rs rset)"
apply(case_tac "a \<in> rset")
apply simp
apply simp
oops
lemma frewrite_rd_grewrites_aux:
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
rsb @
RALTS rs #
rdistinct rsa
(insert (RALTS rs)
(set rsb)) \<leadsto>g* rflts rsb @
rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
apply simp
apply(subgoal_tac "rsb @
RALTS rs #
rdistinct rsa
(insert (RALTS rs)
(set rsb)) \<leadsto>g* rsb @
rs @
rdistinct rsa
(insert (RALTS rs)
(set rsb)) ")
apply(subgoal_tac " rsb @
rs @
rdistinct rsa
(insert (RALTS rs)
(set rsb)) \<leadsto>g*
rsb @
rdistinct rs (set rsb) @
rdistinct rsa
(insert (RALTS rs)
(set rsb)) ")
apply (smt (verit, ccfv_SIG) Un_insert_left flts_gstar greal_trans grewrite_rdistinct_aux grewritess_concat inf_sup_aci(5) rdistinct_concat_general rdistinct_set_equality set_append)
apply (metis append_assoc grewrites.intros(1) grewritess_concat gstar_rdistinct_general)
by (simp add: gr_in_rstar grewrite.intros(2) grewrites_append)
lemma list_dlist_union:
shows "set rs \<subseteq> set rsb \<union> set (rdistinct rs (set rsb))"
by (metis rdistinct_concat_general rdistinct_set_equality set_append sup_ge2)
lemma subset_distinct_rewrite1:
shows "set1 \<subseteq> set rsb \<Longrightarrow> rsb @ rs \<leadsto>g* rsb @ (rdistinct rs set1)"
apply(induct rs arbitrary: rsb)
apply simp
apply(case_tac "a \<in> set1")
apply simp
using gmany_steps_later grewrite_variant1 apply blast
apply simp
apply(drule_tac x = "rsb @ [a]" in meta_spec)
apply(subgoal_tac "set1 \<subseteq> set (rsb @ [a])")
apply (simp only:)
apply(subgoal_tac "(rsb @ [a]) @ rdistinct rs set1 \<leadsto>g* (rsb @ [a]) @ rdistinct rs (insert a set1)")
apply (metis (no_types, opaque_lifting) append.assoc append_Cons append_Nil greal_trans)
apply (metis append.assoc empty_set grewrite_rdistinct_aux grewrites_append inf_sup_aci(5) insert_is_Un list.simps(15))
by auto
lemma subset_distinct_rewrite:
shows "set rsb' \<subseteq> set rsb \<Longrightarrow> rsb @ rs \<leadsto>g* rsb @ (rdistinct rs (set rsb'))"
by (simp add: subset_distinct_rewrite1)
lemma distinct_3list:
shows "rsb @ (rdistinct rs (set rsb)) @ rsa \<leadsto>g*
rsb @ (rdistinct rs (set rsb)) @ (rdistinct rsa (set rs))"
by (metis append.assoc list_dlist_union set_append subset_distinct_rewrite)
lemma grewrites_shape1:
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
rsb @
RALTS rs #
rdistinct rsa
(
(set rsb)) \<leadsto>g* rsb @
rdistinct rs (set rsb) @
rdistinct (rflts (rdistinct rsa ( (set rsb \<union> set rs)))) (set rs)"
apply (subgoal_tac " rsb @
RALTS rs #
rdistinct rsa
(
(set rsb)) \<leadsto>g* rsb @
rs @
rdistinct rsa
(
(set rsb)) ")
prefer 2
using gr_in_rstar grewrite.intros(2) grewrites_append apply presburger
apply(subgoal_tac "rsb @ rs @ rdistinct rsa ( (set rsb)) \<leadsto>g* rsb @
(rdistinct rs (set rsb) @ rdistinct rsa ( (set rsb)))")
prefer 2
apply (metis append_assoc grewrites.intros(1) grewritess_concat gstar_rdistinct_general)
apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct rsa ( (set rsb))
\<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct rsa ( (set rsb) \<union> (set rs))")
prefer 2
apply (smt (verit, best) append.assoc append_assoc boolean_algebra_cancel.sup2 grewrite_rdistinct_aux inf_sup_aci(5) insert_is_Un rdistinct_concat_general rdistinct_set_equality set_append sup.commute sup.right_idem sup_commute)
apply(subgoal_tac "rdistinct rsa ( (set rsb) \<union> set rs) \<leadsto>g*
rflts (rdistinct rsa ( (set rsb) \<union> set rs))")
apply(subgoal_tac "rsb @ (rdistinct rs (set rsb)) @ rflts (rdistinct rsa ( (set rsb) \<union> set rs)) \<leadsto>g*
rsb @ (rdistinct rs (set rsb)) @ (rdistinct (rflts (rdistinct rsa ( (set rsb) \<union> set rs))) (set rs))")
apply (smt (verit, ccfv_SIG) Un_insert_left greal_trans grewrites_append)
using distinct_3list apply presburger
using flts_gstar apply blast
done
lemma r_finite1:
shows "r = RALTS (r # rs) = False"
apply(induct r)
apply simp+
apply (metis list.set_intros(1))
by blast
lemma grewrite_singleton:
shows "[r] \<leadsto>g r # rs \<Longrightarrow> rs = []"
apply (induct "[r]" "r # rs" rule: grewrite.induct)
apply simp
apply (metis r_finite1)
using grewrite.simps apply blast
by simp
lemma impossible_grewrite1:
shows "\<not>( [RONE] \<leadsto>g [])"
using grewrite.cases by fastforce
lemma impossible_grewrite2:
shows "\<not> ([RALTS rs] \<leadsto>g (RALTS rs) # a # rs)"
using grewrite_singleton by blast
lemma wront_sublist_grewrites:
shows "rs1 @ rs2 \<leadsto>g* rs1 @ rs3 \<Longrightarrow> rs2 \<leadsto>g* rs3"
apply(induct rs1 arbitrary: rs2 rs3 rule: rev_induct)
apply simp
apply(drule_tac x = "[x] @ rs2" in meta_spec)
apply(drule_tac x = "[x] @ rs3" in meta_spec)
apply(simp)
oops
lemma concat_rdistinct_equality1:
shows "rdistinct (rs @ rsa) rset = rdistinct rs rset @ rdistinct rsa (rset \<union> (set rs))"
apply(induct rs arbitrary: rsa rset)
apply simp
apply(case_tac "a \<in> rset")
apply simp
apply (simp add: insert_absorb)
by auto
lemma middle_grewrites:
"rs1 \<leadsto>g* rs2 \<Longrightarrow> rsa @ rs1 @ rsb \<leadsto>g* rsa @ rs2 @ rsb "
by (simp add: grewritess_concat)
lemma rdistinct_removes_all:
shows "set rs \<subseteq> rset \<Longrightarrow> rdistinct rs rset = []"
by (metis append.right_neutral rdistinct.simps(1) rdistinct_concat)
lemma ends_removal:
shows " rsb @ rdistinct rs (set rsb) @ RALTS rs # rsc \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rsc"
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ RALTS rs # rsc \<leadsto>g*
rsb @ rdistinct rs (set rsb) @ rs @ rsc")
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rs @ rsc \<leadsto>g*
rsb @ rdistinct rs (set rsb) @ rdistinct rs (set (rsb @ rdistinct rs (set rsb))) @ rsc")
apply (metis (full_types) append_Nil2 append_eq_appendI greal_trans list_dlist_union rdistinct_removes_all set_append)
apply (metis append.assoc append_Nil gstar_rdistinct_general middle_grewrites)
using gr_in_rstar grewrite.intros(2) grewrites_append by presburger
lemma grewrites_rev_append:
shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rs1 @ [x] \<leadsto>g* rs2 @ [x]"
using grewritess_concat by auto
lemma grewrites_inclusion:
shows "set rs \<subseteq> set rs1 \<Longrightarrow> rs1 @ rs \<leadsto>g* rs1"
apply(induct rs arbitrary: rs1)
apply simp
by (meson gmany_steps_later grewrite_variant1 list.set_intros(1) set_subset_Cons subset_code(1))
lemma distinct_keeps_last:
shows "\<lbrakk>x \<notin> rset; x \<notin> set xs \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]"
by (simp add: concat_rdistinct_equality1)
lemma grewrites_shape2_aux:
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
rsb @
rdistinct (rs @ rsa)
(set rsb) \<leadsto>g* rsb @
rdistinct rs (set rsb) @
rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
apply(subgoal_tac " rdistinct (rs @ rsa) (set rsb) = rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb)")
apply (simp only:)
prefer 2
apply (simp add: Un_commute concat_rdistinct_equality1)
apply(induct rsa arbitrary: rs rsb rule: rev_induct)
apply simp
apply(case_tac "x \<in> set rs")
apply (simp add: distinct_removes_middle3)
apply(case_tac "x = RALTS rs")
apply simp
apply(case_tac "x \<in> set rsb")
apply simp
apply (simp add: concat_rdistinct_equality1)
apply (simp add: concat_rdistinct_equality1)
apply simp
apply(drule_tac x = "rs " in meta_spec)
apply(drule_tac x = rsb in meta_spec)
apply simp
apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (insert (RALTS rs) (set rs \<union> set rsb))")
prefer 2
apply (simp add: concat_rdistinct_equality1)
apply(case_tac "x \<in> set xs")
apply simp
apply (simp add: distinct_removes_last2)
apply(case_tac "x \<in> set rsb")
apply (smt (verit, ccfv_threshold) Un_iff append.right_neutral concat_rdistinct_equality1 insert_is_Un rdistinct.simps(2))
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (set rs \<union> set rsb) = rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x]")
apply(simp only:)
apply(case_tac "x = RALTS rs")
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x] \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs")
apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) ")
apply (smt (verit, ccfv_SIG) Un_insert_left append.right_neutral concat_rdistinct_equality1 greal_trans insert_iff rdistinct.simps(2))
apply(subgoal_tac "set rs \<subseteq> set ( rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb))")
apply (metis append.assoc grewrites_inclusion)
apply (metis Un_upper1 append.assoc dual_order.trans list_dlist_union set_append)
apply (metis append_Nil2 gr_in_rstar grewrite.intros(2) grewrite_append)
apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (insert (RALTS rs) (set rs \<union> set rsb)) = rsb @ rdistinct rs (set rsb) @ rdistinct (xs) (insert (RALTS rs) (set rs \<union> set rsb)) @ [x]")
apply(simp only:)
apply (metis append.assoc grewrites_rev_append)
apply (simp add: insert_absorb)
apply (simp add: distinct_keeps_last)+
done
lemma grewrites_shape2:
shows " RALTS rs \<notin> set rsb \<Longrightarrow>
rsb @
rdistinct (rs @ rsa)
(set rsb) \<leadsto>g* rflts rsb @
rdistinct rs (set rsb) @
rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
apply (meson flts_gstar greal_trans grewrites.simps grewrites_shape2_aux grewritess_concat)
done
lemma rdistinct_add_acc:
shows "rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)"
apply(induct rs arbitrary: rsb rset rset2)
apply simp
apply (case_tac "a \<in> rset")
apply simp
apply(case_tac "a \<in> rset2")
apply simp
apply (simp add: more_distinct1)
apply simp
apply(drule_tac x = "rsb @ [a]" in meta_spec)
by (metis Un_insert_left append.assoc append_Cons append_Nil set_append sup.coboundedI1)
lemma frewrite_fun1:
shows " RALTS rs \<in> set rsb \<Longrightarrow>
rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)"
apply(subgoal_tac "rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb)")
apply(subgoal_tac " set rs \<subseteq> set (rflts rsb)")
prefer 2
using spilled_alts_contained apply blast
apply(subgoal_tac "rflts rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)")
using greal_trans apply blast
using rdistinct_add_acc apply presburger
using flts_gstar grewritess_concat by auto
lemma frewrite_rd_grewrites:
shows "rs1 \<leadsto>f rs2 \<Longrightarrow>
\<exists>rs3. (rs @ (rdistinct rs1 (set rs)) \<leadsto>g* rs3) \<and> (rs @ (rdistinct rs2 (set rs)) \<leadsto>g* rs3) "
apply(induct rs1 rs2 arbitrary: rs rule: frewrite.induct)
apply(rule_tac x = "rsa @ (rdistinct rs ({RZERO} \<union> set rsa))" in exI)
apply(rule conjI)
apply(case_tac "RZERO \<in> set rsa")
apply simp+
using gstar0 apply fastforce
apply (simp add: gr_in_rstar grewrite.intros(1) grewrites_append)
apply (simp add: gstar0)
prefer 2
apply(case_tac "r \<in> set rs")
apply simp
apply(drule_tac x = "rs @ [r]" in meta_spec)
apply(erule exE)
apply(rule_tac x = "rs3" in exI)
apply simp
apply(case_tac "RALTS rs \<in> set rsb")
apply simp
apply(rule_tac x = "rflts rsb @ rdistinct rsa (set rsb \<union> set rs)" in exI)
apply(rule conjI)
using frewrite_fun1 apply force
apply (metis frewrite_fun1 rdistinct_concat sup_ge2)
apply(simp)
apply(rule_tac x =
"rflts rsb @
rdistinct rs (set rsb) @
rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})" in exI)
apply(rule conjI)
prefer 2
using grewrites_shape2 apply force
using frewrite_rd_grewrites_aux by blast
lemma frewrites_rd_grewrites:
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow>
rsimp (RALTS rs1) = rsimp (RALTS rs2)"
apply(induct rs1 rs2 rule: frewrites.induct)
apply simp
using frewrite_simpeq by presburger
lemma frewrite_simpeq2:
shows "rs1 \<leadsto>f rs2 \<Longrightarrow> rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS (rdistinct rs2 {}))"
apply(subgoal_tac "\<exists> rs3. (rdistinct rs1 {} \<leadsto>g* rs3) \<and> (rdistinct rs2 {} \<leadsto>g* rs3)")
using grewrites_equal_rsimp apply fastforce
by (metis append_self_conv2 frewrite_rd_grewrites list.set(1))
(*a more refined notion of \<leadsto>* is needed,
this lemma fails when rs1 contains some RALTS rs where elements
of rs appear in later parts of rs1, which will be picked up by rs2
and deduplicated*)
lemma frewrites_simpeq:
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow>
rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS ( rdistinct rs2 {})) "
apply(induct rs1 rs2 rule: frewrites.induct)
apply simp
using frewrite_simpeq2 by presburger
lemma frewrite_single_step:
shows " rs2 \<leadsto>f rs3 \<Longrightarrow> rsimp (RALTS rs2) = rsimp (RALTS rs3)"
apply(induct rs2 rs3 rule: frewrite.induct)
apply simp
using simp_flatten apply blast
by (metis (no_types, opaque_lifting) list.simps(9) rsimp.simps(2) simp_flatten2)
lemma frewrites_equivalent_simp:
shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
apply(induct rs1 rs2 rule: frewrites.induct)
apply simp
using frewrite_single_step by presburger
lemma grewrite_simpalts:
shows " rs2 \<leadsto>g rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)"
apply(induct rs2 rs3 rule : grewrite.induct)
using identity_wwo0 apply presburger
apply (metis frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_flatten)
apply (smt (verit, ccfv_SIG) gmany_steps_later grewrites.intros(1) grewrites_cons grewrites_equal_rsimp identity_wwo0 rsimp_ALTs.simps(3))
apply simp
apply(subst rsimp_alts_equal)
apply(case_tac "rsa = [] \<and> rsb = [] \<and> rsc = []")
apply(subgoal_tac "rsa @ a # rsb @ rsc = [a]")
apply (simp only:)
apply (metis append_Nil frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_removes_duplicate1(2))
apply simp
by (smt (verit, best) append.assoc append_Cons frewrite.intros(1) frewrite_single_step identity_wwo0 in_set_conv_decomp rsimp_ALTs.simps(3) simp_removes_duplicate3)
lemma grewrites_simpalts:
shows " rs2 \<leadsto>g* rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)"
apply(induct rs2 rs3 rule: grewrites.induct)
apply simp
using grewrite_simpalts by presburger
lemma simp_der_flts:
shows "rsimp (RALTS (rdistinct (map (rder x) (rflts rs)) {})) =
rsimp (RALTS (rdistinct (rflts (map (rder x) rs)) {}))"
apply(subgoal_tac "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)")
using frewrites_simpeq apply presburger
using early_late_der_frewrites by auto
lemma simp_der_pierce_flts_prelim:
shows "rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts rs)) {}))
= rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) rs)) {}))"
by (metis append.right_neutral grewrite.intros(2) grewrite_simpalts rsimp_ALTs.simps(2) simp_der_flts)
lemma simp_der_pierce_flts:
shows " rsimp (
rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})
) =
rsimp (
rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})
)"
using simp_der_pierce_flts_prelim by presburger
lemma simp_more_distinct:
shows "rsimp (rsimp_ALTs (rsa @ rs)) = rsimp (rsimp_ALTs (rsa @ (rdistinct rs (set rsa)))) "
oops
lemma non_empty_list:
shows "a \<in> set as \<Longrightarrow> as \<noteq> []"
by (metis empty_iff empty_set)
lemma distinct_comp:
shows "rdistinct (rs1@rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
apply(induct rs2 arbitrary: rs1)
apply simp
apply(subgoal_tac "rs1 @ a # rs2 = (rs1 @ [a]) @ rs2")
apply(simp only:)
apply(case_tac "a \<in> set rs1")
apply simp
oops
lemma instantiate1:
shows "\<lbrakk>\<And>ab rset1. rdistinct (ab # as) rset1 = rdistinct (ab # as @ [ab]) rset1\<rbrakk> \<Longrightarrow>
rdistinct (aa # as) rset = rdistinct (aa # as @ [aa]) rset"
apply(drule_tac x = "aa" in meta_spec)
apply(drule_tac x = "rset" in meta_spec)
apply simp
done
lemma not_head_elem:
shows " \<lbrakk>aa \<in> set (a # as); aa \<notin> (set as)\<rbrakk> \<Longrightarrow> a = aa"
by fastforce
(*
apply simp
apply (metis append_Cons)
apply(case_tac "ab \<in> rset1")
apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left)
apply(subgoal_tac "rdistinct (ab # (aa # as) @ [ab]) rset1 =
ab # (rdistinct ((aa # as) @ [ab]) (insert ab rset1))")
apply(simp only:)
apply(subgoal_tac "rdistinct (ab # aa # as) rset1 = ab # (rdistinct (aa # as) (insert ab rset1))")
apply(simp only:)
apply(subgoal_tac "rdistinct ((aa # as) @ [ab]) (insert ab rset1) = rdistinct (aa # as) (insert ab rset1)")
apply blast
*)
lemma flts_identity1:
shows "rflts (rs @ [RONE]) = rflts rs @ [RONE] "
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp
apply simp+
done
lemma flts_identity10:
shows " rflts (rs @ [RCHAR c]) = rflts rs @ [RCHAR c]"
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp+
done
lemma flts_identity11:
shows " rflts (rs @ [RSEQ r1 r2]) = rflts rs @ [RSEQ r1 r2]"
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp+
done
lemma flts_identity12:
shows " rflts (rs @ [RSTAR r0]) = rflts rs @ [RSTAR r0]"
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp+
done
lemma flts_identity2:
shows "a \<noteq> RZERO \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow> rflts (rs @ [a]) = rflts rs @ [a]"
apply(case_tac a)
apply simp
using flts_identity1 apply auto[1]
using flts_identity10 apply blast
using flts_identity11 apply auto[1]
apply blast
using flts_identity12 by presburger
lemma flts_identity3:
shows "a = RZERO \<Longrightarrow> rflts (rs @ [a]) = rflts rs"
apply simp
apply(induct rs)
apply simp+
apply(case_tac aa)
apply simp+
done
lemma distinct_removes_last3:
shows "\<lbrakk>a \<in> set as\<rbrakk>
\<Longrightarrow> rdistinct as {} = rdistinct (as @ [a]) {}"
by (simp add: distinct_removes_last2)
lemma set_inclusion_with_flts1:
shows " \<lbrakk>RONE \<in> set rs\<rbrakk> \<Longrightarrow> RONE \<in> set (rflts rs)"
apply(induct rs)
apply simp
apply(case_tac " RONE \<in> set rs")
apply simp
apply (metis Un_upper2 insert_absorb insert_subset list.set_intros(2) rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append)
apply(case_tac "RONE = a")
apply simp
apply simp
done
lemma set_inclusion_with_flts10:
shows " \<lbrakk>RCHAR x \<in> set rs\<rbrakk> \<Longrightarrow> RCHAR x \<in> set (rflts rs)"
apply(induct rs)
apply simp
apply(case_tac " RCHAR x \<in> set rs")
apply simp
apply (metis Un_upper2 insert_absorb insert_subset rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append set_subset_Cons)
apply(case_tac "RCHAR x = a")
apply simp
apply fastforce
apply simp
done
lemma set_inclusion_with_flts11:
shows " \<lbrakk>RSEQ r1 r2 \<in> set rs\<rbrakk> \<Longrightarrow> RSEQ r1 r2 \<in> set (rflts rs)"
apply(induct rs)
apply simp
apply(case_tac " RSEQ r1 r2 \<in> set rs")
apply simp
apply (metis Un_upper2 insert_absorb insert_subset rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append set_subset_Cons)
apply(case_tac "RSEQ r1 r2 = a")
apply simp
apply fastforce
apply simp
done
lemma set_inclusion_with_flts:
shows " \<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as); rsimp a = RONE\<rbrakk> \<Longrightarrow> rsimp a \<in> set (rflts (map rsimp as))"
by (simp add: set_inclusion_with_flts1)
lemma can_spill_lst:"\<And>x5. \<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as); rsimp a = RALTS x5\<rbrakk>
\<Longrightarrow> rsimp_ALTs (rdistinct (rflts (map rsimp as @ [rsimp a])) {}) =
rsimp_ALTs (rdistinct (rflts (map rsimp as @ x5)) {})"
using flts_append rflts_spills_last rsimp_inner_idem4 by presburger
lemma common_rewrites_equal:
shows "(rs1 \<leadsto>g* rs3) \<and> (rs2 \<leadsto>g* rs3) \<Longrightarrow> rsimp (rsimp_ALTs rs1 ) = rsimp (rsimp_ALTs rs2)"
using grewrites_simpalts by force
lemma basic_regex_property1:
shows "rnullable r \<Longrightarrow> rsimp r \<noteq> RZERO"
sorry
lemma basic_rsimp_SEQ_property1:
shows "rsimp_SEQ RONE r = r"
by (simp add: idiot)
lemma basic_rsimp_SEQ_property3:
shows "rsimp_SEQ r RZERO = RZERO"
using rsimp_SEQ.elims by blast
thm rsimp_SEQ.elims
lemma basic_rsimp_SEQ_property2:
shows "\<lbrakk>r1 \<noteq> RZERO ; r1 \<noteq> RONE; r2 \<noteq> RZERO\<rbrakk> \<Longrightarrow>rsimp_SEQ r1 r2 = RSEQ r1 r2"
apply(case_tac r1)
apply simp+
apply (simp add: idiot2)
using idiot2 apply blast
using idiot2 apply auto[1]
using idiot2 by blast
(*
lemma rderssimp_same_rewrites_rder_induct1:
shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) ;
([rder x (rsimp r2)] \<leadsto>g* rs2) \<and> ([rder x r2] \<leadsto>g* rs2) \<rbrakk> \<Longrightarrow>
\<exists>rs3. ([rder x (rsimp (RSEQ r1 r2))] \<leadsto>g* rs3) \<and> ([rder x (RSEQ r1 r2)] \<leadsto>g* rs3) "
sorry
lemma rderssimp_same_rewrites_rder_induct2:
shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) \<rbrakk> \<Longrightarrow>
\<exists>rs3. ([rder x (rsimp (RSTAR r1))] \<leadsto>g* rs3) \<and> ([rder x (RSTAR r1)] \<leadsto>g* rs3) "
sorry
lemma rderssimp_same_rewrites_rder_induct3:
shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) ;
([rder x (rsimp r2)] \<leadsto>g* rs2) \<and> ([rder x r2] \<leadsto>g* rs2) \<rbrakk> \<Longrightarrow>
\<exists>rs3. ([rder x (rsimp (RALT r1 r2))] \<leadsto>g* rs3) \<and> ([rder x (RALT r1 r2)] \<leadsto>g* rs3) "
sorry
lemma rderssimp_same_rewrites_rder_induct4:
shows "\<lbrakk>\<forall>r \<in> set rs. \<exists> rsa. ([rder x (rsimp r)] \<leadsto>g* rsa ) \<and> ([rder x r] \<leadsto>g* rsa) \<rbrakk> \<Longrightarrow>
\<exists>rsb. ([rder x (rsimp (RALTS rs))] \<leadsto>g* rsb) \<and> ([rder x (RALTS rs)] \<leadsto>g* rsb) "
sorry
lemma rderssimp_same_rewrites_rder_base1:
shows "([rder x (rsimp RONE)] \<leadsto>g* [] ) \<and> ([rder x RONE] \<leadsto>g* [])"
by (simp add: gr_in_rstar grewrite.intros(1))
lemma rderssimp_same_rewrites_rder_base2:
shows " ([rder x (rsimp RZERO)] \<leadsto>g* [] ) \<and> ([rder x RZERO] \<leadsto>g* [])"
using rderssimp_same_rewrites_rder_base1 by auto
lemma rderssimp_same_rewrites_rder_base3:
shows " ([rder x (rsimp (RCHAR c))] \<leadsto>g* [] ) \<and> ([rder x (RCHAR c)] \<leadsto>g* [])"
sorry
*)
lemma inside_simp_seq_nullable:
shows
"\<And>r1 r2.
\<lbrakk>rsimp (rder x (rsimp r1)) = rsimp (rder x r1); rsimp (rder x (rsimp r2)) = rsimp (rder x r2);
rnullable r1\<rbrakk>
\<Longrightarrow> rsimp (rder x (rsimp_SEQ (rsimp r1) (rsimp r2))) =
rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp (rder x r1)) (rsimp r2), rsimp (rder x r2)]) {})"
apply(case_tac "rsimp r1 = RONE")
apply(simp)
apply(subst basic_rsimp_SEQ_property1)
apply (simp add: idem_after_simp1)
apply(case_tac "rsimp r1 = RZERO")
using basic_regex_property1 apply blast
apply(case_tac "rsimp r2 = RZERO")
apply (simp add: basic_rsimp_SEQ_property3)
apply(subst basic_rsimp_SEQ_property2)
apply simp+
apply(subgoal_tac "rnullable (rsimp r1)")
apply simp
using rsimp_idem apply presburger
using der_simp_nullability by presburger
inductive
hrewrite:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99)
where
"RSEQ RZERO r2 \<leadsto> RZERO"
| "RSEQ r1 RZERO \<leadsto> RZERO"
| "RSEQ RONE r \<leadsto> r"
| "r1 \<leadsto> r2 \<Longrightarrow> RSEQ r1 r3 \<leadsto> RSEQ r2 r3"
| "r3 \<leadsto> r4 \<Longrightarrow> RSEQ r1 r3 \<leadsto> RSEQ r1 r4"
| "r \<leadsto> r' \<Longrightarrow> (RALTS (rs1 @ [r] @ rs2)) \<leadsto> (RALTS (rs1 @ [r'] @ rs2))"
(*context rule for eliminating 0, alts--corresponds to the recursive call flts r::rs = r::(flts rs)*)
| "RALTS (rsa @ [AZERO] @ rsb) \<leadsto> RALTS (rsa @ rsb)"
| "RALTS (rsa @ [RALTS rs1] @ rsb) \<leadsto> RALTS (rsa @ rs1 @ rsb)"
| "RALTS [] \<leadsto> RZERO"
| "RALTS [r] \<leadsto> r"
| "a1 = a2 \<Longrightarrow> RALTS (rsa@[a1]@rsb@[a2]@rsc) \<leadsto> RALTS (rsa @ [a1] @ rsb @ rsc)"
inductive
hrewrites:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100)
where
rs1[intro, simp]:"r \<leadsto>* r"
| rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"
lemma hr_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2"
using hrewrites.intros(1) hrewrites.intros(2) by blast
lemma hreal_trans[trans]:
assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3"
shows "r1 \<leadsto>* r3"
using a2 a1
apply(induct r2 r3 arbitrary: r1 rule: hrewrites.induct)
apply(auto)
done
lemma hmany_steps_later: "\<lbrakk>r1 \<leadsto> r2; r2 \<leadsto>* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"
by (meson hr_in_rstar hreal_trans)
lemma hrewrites_seq_context:
shows "r1 \<leadsto>* r2 \<Longrightarrow> RSEQ r1 r3 \<leadsto>* RSEQ r2 r3"
apply(induct r1 r2 rule: hrewrites.induct)
apply simp
using hrewrite.intros(4) by blast
lemma hrewrites_seq_context2:
shows "r1 \<leadsto>* r2 \<Longrightarrow> RSEQ r0 r1 \<leadsto>* RSEQ r0 r2"
apply(induct r1 r2 rule: hrewrites.induct)
apply simp
using hrewrite.intros(5) by blast
lemma hrewrites_seq_context0:
shows "r1 \<leadsto>* RZERO \<Longrightarrow> RSEQ r1 r3 \<leadsto>* RZERO"
apply(subgoal_tac "RSEQ r1 r3 \<leadsto>* RSEQ RZERO r3")
using hrewrite.intros(1) apply blast
by (simp add: hrewrites_seq_context)
lemma hrewrites_seq_contexts:
shows "\<lbrakk>r1 \<leadsto>* r2; r3 \<leadsto>* r4\<rbrakk> \<Longrightarrow> RSEQ r1 r3 \<leadsto>* RSEQ r2 r4"
by (meson hreal_trans hrewrites_seq_context hrewrites_seq_context2)
lemma hrewrites_simpeq:
shows "r1 \<leadsto>* r2 \<Longrightarrow> rsimp r1 = rsimp r2"
sorry
lemma distinct_grewrites_subgoal1:
shows " \<And>rs1 rs2 rs3 a list.
\<lbrakk>rs1 \<leadsto>g* [a]; RALTS rs1 \<leadsto>* a; [a] \<leadsto>g rs3; rs2 = [a]; list = []\<rbrakk> \<Longrightarrow> RALTS rs1 \<leadsto>* rsimp_ALTs rs3"
(* apply (smt (z3) append.left_neutral append.right_neutral append_Cons grewrite.simps grewrite_singleton hrewrite.intros(10) hrewrite.intros(9) hrewrites.simps list.inject r_finite1 rsimp_ALTs.elims rsimp_ALTs.simps(2) rsimp_alts_equal)*)
sorry
lemma grewrite_ralts:
shows "rs \<leadsto>g rs' \<Longrightarrow> RALTS rs \<leadsto>* RALTS rs'"
by (smt (verit) grewrite_cases_middle hr_in_rstar hrewrite.intros(11) hrewrite.intros(7) hrewrite.intros(8))
lemma grewrites_ralts:
shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs \<leadsto>* RALTS rs'"
apply(induct rs rs' rule: grewrites.induct)
apply simp
using grewrite_ralts hreal_trans by blast
lemma grewrites_ralts_rsimpalts:
shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs \<leadsto>* rsimp_ALTs rs' "
apply(induct rs rs' rule: grewrites.induct)
apply(case_tac rs)
using hrewrite.intros(9) apply force
apply(case_tac list)
apply simp
using hr_in_rstar hrewrite.intros(10) rsimp_ALTs.simps(2) apply presburger
apply simp
apply(case_tac rs2)
apply simp
apply (metis grewrite.intros(3) grewrite_singleton rsimp_ALTs.simps(1))
apply(case_tac list)
apply(simp)
using distinct_grewrites_subgoal1 apply blast
apply simp
apply(case_tac rs3)
apply simp
using grewrites_ralts hrewrite.intros(9) apply blast
by (metis (no_types, opaque_lifting) grewrite_ralts hr_in_rstar hreal_trans hrewrite.intros(10) neq_Nil_conv rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))
lemma hrewrites_list:
shows "\<forall>r \<in> set rs. r \<leadsto>* f r \<Longrightarrow> rs \<leadsto>g* map f rs"
sorry
lemma simp_hrewrites:
shows "r1 \<leadsto>* rsimp r1"
apply(induct r1)
apply simp+
apply(case_tac "rsimp r11 = RONE")
apply simp
apply(subst basic_rsimp_SEQ_property1)
apply(subgoal_tac "RSEQ r11 r12 \<leadsto>* RSEQ RONE r12")
using hreal_trans hrewrite.intros(3) apply blast
using hrewrites_seq_context apply presburger
apply(case_tac "rsimp r11 = RZERO")
apply simp
using hrewrite.intros(1) hrewrites_seq_context apply blast
apply(case_tac "rsimp r12 = RZERO")
apply simp
apply(subst basic_rsimp_SEQ_property3)
apply (meson hrewrite.intros(2) hrewrites.simps hrewrites_seq_context2)
apply(subst basic_rsimp_SEQ_property2)
apply simp+
using hrewrites_seq_contexts apply presburger
apply simp
apply(subgoal_tac "RALTS x \<leadsto>* RALTS (map rsimp x)")
apply(subgoal_tac "RALTS (map rsimp x) \<leadsto>* rsimp_ALTs (rdistinct (rflts (map rsimp x)) {}) ")
using hreal_trans apply blast
apply (meson flts_gstar greal_trans grewrites_ralts_rsimpalts gstar_rdistinct)
sledgehammer
sorry
lemma inside_simp_removal:
shows " rsimp (rder x (rsimp r)) = rsimp (rder x r)"
apply(induct r)
apply simp+
apply(case_tac "rnullable r1")
apply simp
using inside_simp_seq_nullable apply blast
apply simp
apply (smt (verit, del_insts) basic_rsimp_SEQ_property2 basic_rsimp_SEQ_property3 der_simp_nullability rder.simps(1) rder.simps(5) rnullable.simps(2) rsimp.simps(1) rsimp_SEQ.simps(1) rsimp_idem)
sorry
lemma rders_simp_same_simpders:
shows "s \<noteq> [] \<Longrightarrow> rders_simp r s = rsimp (rders r s)"
apply(induct s rule: rev_induct)
apply simp
apply(case_tac "xs = []")
apply simp
apply(simp add: rders_append rders_simp_append)
using inside_simp_removal by blast
lemma distinct_der:
shows "rsimp (rsimp_ALTs (map (rder x) (rdistinct rs {}))) =
rsimp (rsimp_ALTs (rdistinct (map (rder x) rs) {}))"
by (metis grewrites_simpalts gstar_rdistinct inside_simp_removal rder_rsimp_ALTs_commute)
lemma rders_simp_lambda:
shows " rsimp \<circ> rder x \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r (xs @ [x]))"
using rders_simp_append by auto
lemma rders_simp_nonempty_simped:
shows "xs \<noteq> [] \<Longrightarrow> rsimp \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r xs)"
using rders_simp_same_simpders rsimp_idem by auto
lemma repeated_altssimp:
shows "\<forall>r \<in> set rs. rsimp r = r \<Longrightarrow> rsimp (rsimp_ALTs (rdistinct (rflts rs) {})) =
rsimp_ALTs (rdistinct (rflts rs) {})"
by (metis map_idI rsimp.simps(2) rsimp_idem)
lemma add0_isomorphic:
shows "rsimp_ALTs (rdistinct (rflts [rsimp r, RZERO]) {}) = rsimp r"
sorry
lemma distinct_append_simp:
shows " rsimp (rsimp_ALTs rs1) = rsimp (rsimp_ALTs rs2) \<Longrightarrow>
rsimp (rsimp_ALTs (f a # rs1)) =
rsimp (rsimp_ALTs (f a # rs2))"
apply(case_tac rs1)
apply simp
apply(case_tac rs2)
apply simp
apply simp
prefer 2
apply(case_tac list)
apply(case_tac rs2)
apply simp
using add0_isomorphic apply blast
apply simp
oops
lemma alts_closed_form: shows
"rsimp (rders_simp (RALTS rs) s) =
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
apply(induct s rule: rev_induct)
apply simp
apply simp
apply(subst rders_simp_append)
apply(subgoal_tac " rsimp (rders_simp (rders_simp (RALTS rs) xs) [x]) =
rsimp(rders_simp (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})) [x])")
prefer 2
apply (metis inside_simp_removal rders_simp_one_char)
apply(simp only: )
apply(subst rders_simp_one_char)
apply(subst rsimp_idem)
apply(subgoal_tac "rsimp (rder x (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {}))) =
rsimp ((rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))) ")
prefer 2
using rder_rsimp_ALTs_commute apply presburger
apply(simp only:)
apply(subgoal_tac "rsimp (rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))
= rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
prefer 2
using distinct_der apply presburger
apply(simp only:)
apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
rsimp (rsimp_ALTs (rdistinct ( (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)))) {}))")
apply(simp only:)
apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
rsimp (rsimp_ALTs (rdistinct (rflts ( (map (rsimp \<circ> (rder x) \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
apply(simp only:)
apply(subst rders_simp_lambda)
apply(subst rders_simp_nonempty_simped)
apply simp
apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (xs @ [x])) rs). rsimp r = r")
prefer 2
apply (simp add: rders_simp_same_simpders rsimp_idem)
apply(subst repeated_altssimp)
apply simp
apply fastforce
apply (metis inside_simp_removal list.map_comp rder.simps(4) rsimp.simps(2) rsimp_idem)
using simp_der_pierce_flts by blast
lemma alts_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> rders_simp (RALTS rs) s =
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
by (metis alts_closed_form comp_apply rders_simp_nonempty_simped)
lemma star_closed_form:
shows "rders_simp (RSTAR r0) (c#s) =
rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))"
apply(induct s)
apply simp
sorry
thm vsuf.simps
lemma rsimp_seq_equal1:
shows "rsimp_SEQ (rsimp r1) (rsimp r2) = rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp r1) (rsimp r2)]) {})"
by (metis idem_after_simp1 rsimp.simps(1))
lemma vsuf_der_stepwise:
shows "rsimp (RALTS (RSEQ (rders_simp r1 (xs @ [x])) r2 # map (rders_simp r2) (vsuf (xs @ [x]) r1))) =
rsimp (rder x (rsimp (RALTS (RSEQ (rders_simp r1 xs) r2 # map (rders_simp r2) (vsuf xs r1)))))"
apply simp
apply(subst rders_simp_append)
oops
fun sflat :: "rrexp \<Rightarrow> rrexp list " where
"sflat (RALT r1 r2) = sflat r1 @ [r2]"
| "sflat (RALTS rs) = rs"
| "sflat r = [r]"
lemma seq_sflat0:
shows "sflat (rders (RSEQ r1 r2) s) = sflat (RALTS ( (RSEQ (rders r1 s) r2) #
(map (rders r2) (vsuf s r1))) )"
sorry
lemma seq_sflat1:
shows "sflat ( RALTS ( (RSEQ (rders r1 (s @ [c])) r2) #
(map (rders r2) (vsuf (s @ [c]) r1))
) ) = sflat (rders (RSEQ r1 r2) (s @ [c]))"
sorry
lemma seq_sflat:
shows "sflat ( RALTS ( (RSEQ (rders r1 (s @ [c])) r2) #
(map (rders r2) (vsuf (s @ [c]) r1))
) ) = sflat ( rder x (RALTS ( (RSEQ (rders r1 s) r2) #
(map (rders r2) (vsuf s r1))
)) )"
sorry
lemma sflat_rsimpeq:
shows "sflat r1 = sflat r2 \<Longrightarrow> rsimp r1 = rsimp r2"
sorry
lemma seq_closed_form_general:
shows "rsimp (rders (RSEQ r1 r2) s) =
rsimp ( (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1))))))"
apply(subgoal_tac "sflat (rders (RSEQ r1 r2) s) = sflat (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1)))))")
using sflat_rsimpeq apply blast
by (simp add: seq_sflat0)
lemma seq_closed_form_aux1:
shows "rsimp ( (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1)))))) =
rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1))))))"
by (smt (verit, best) list.simps(9) rders.simps(1) rders_simp.simps(1) rders_simp_same_simpders rsimp.simps(1) rsimp.simps(2) rsimp_idem)
lemma add_simp_to_rest:
shows "rsimp (RALTS (r # rs)) = rsimp (RALTS (r # map rsimp rs))"
by (metis append_Nil2 grewrite.intros(2) grewrite_simpalts head_one_more_simp list.simps(9) rsimp_ALTs.simps(2) spawn_simp_rsimpalts)
lemma rsimp_compose_der:
shows "map rsimp (map (rders r) ss) = map (\<lambda>s. rsimp (rders r s)) ss"
apply simp
done
lemma rsimp_compose_der2:
shows "\<forall>s \<in> set ss. s \<noteq> [] \<Longrightarrow> map rsimp (map (rders r) ss) = map (\<lambda>s. (rders_simp r s)) ss"
by (simp add: rders_simp_same_simpders)
lemma vsuf_nonempty:
shows "\<forall>s \<in> set ( vsuf s1 r). s \<noteq> []"
apply(induct s1 arbitrary: r)
apply simp
apply simp
done
lemma rsimp_compose_der3:
shows " map rsimp (map (rders r) (vsuf s1 r')) = map (\<lambda>s. rsimp (rders_simp r s)) (vsuf s1 r')"
by (simp add: rders_simp_same_simpders rsimp_idem vsuf_nonempty)
thm rders_simp_same_simpders
lemma seq_closed_form_aux2:
shows "s \<noteq> [] \<Longrightarrow> rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1)))))) =
rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders_simp r2) (vsuf s r1))))))"
by (metis add_simp_to_rest rsimp_compose_der2 vsuf_nonempty)
lemma seq_closed_form: shows
"rsimp (rders_simp (RSEQ r1 r2) s) =
rsimp ( RALTS ( (RSEQ (rders_simp r1 s) r2) #
(map (rders_simp r2) (vsuf s r1))
)
)"
apply(case_tac s )
apply simp
apply (metis idem_after_simp1 rsimp.simps(1))
apply(subgoal_tac " s \<noteq> []")
using rders_simp_same_simpders rsimp_idem seq_closed_form_aux1 seq_closed_form_aux2 seq_closed_form_general apply presburger
by fastforce
lemma seq_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> (rders_simp (RSEQ r1 r2) s) =
rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))"
apply(induct s rule: rev_induct)
apply simp
apply(subst rders_simp_append)
apply(subst rders_simp_one_char)
apply(subst rsimp_idem[symmetric])
apply(subst rders_simp_one_char[symmetric])
apply(subst rders_simp_append[symmetric])
apply(insert seq_closed_form)
apply(subgoal_tac "rsimp (rders_simp (RSEQ r1 r2) (xs @ [x]))
= rsimp (RALTS (RSEQ (rders_simp r1 (xs @ [x])) r2 # map (rders_simp r2) (vsuf (xs @ [x]) r1)))")
apply force
by presburger
lemma simp_helps_der_pierce:
shows " rsimp
(rder x
(rsimp_ALTs rs)) =
rsimp
(rsimp_ALTs
(map (rder x )
rs
)
)"
sorry
end