import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
abstract class Rexp
case object NULL extends Rexp
case object EMPTY extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
abstract class Val
case object Void extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => EMPTY
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
def pretty(r: Rexp) : String = r match {
case NULL => "0"
case EMPTY => "e"
case CHAR(c) => c.toString
case ALT(r1, r2) => "(" ++ pretty(r1) ++ " | " + pretty(r2) ++ ")"
case SEQ(r1, r2) => pretty(r1) ++ pretty(r2)
case STAR(r) => "(" ++ pretty(r) ++ ")*"
case RECD(x, r) => "(" ++ x ++ " : " ++ pretty(r) ++ ")"
}
def vpretty(v: Val) : String = v match {
case Void => "()"
case Chr(c) => c.toString
case Left(v) => "Left(" ++ vpretty(v) ++ ")"
case Right(v) => "Right(" ++ vpretty(v) ++ ")"
case Sequ(v1, v2) => vpretty(v1) ++ " ~ " ++ vpretty(v2)
case Stars(vs) => vs.flatMap(vpretty).mkString("[", ",", "]")
case Rec(x, v) => "(" ++ x ++ ":" ++ vpretty(v) ++ ")"
}
// size of a regular expressions - for testing purposes
def size(r: Rexp) : Int = r match {
case NULL => 1
case EMPTY => 1
case CHAR(_) => 1
case ALT(r1, r2) => 1 + size(r1) + size(r2)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
case RECD(_, r) => 1 + size(r)
}
// extracts a set of candidate values from a "non-starred" regular expression
def values(r: Rexp) : Set[Val] = r match {
case NULL => Set()
case EMPTY => Set(Void)
case CHAR(c) => Set(Chr(c))
case ALT(r1, r2) => (for (v1 <- values(r1)) yield Left(v1)) ++
(for (v2 <- values(r2)) yield Right(v2))
case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2)
case STAR(r) => Set(Void) ++ values(r) // to do more would cause the set to be infinite
case RECD(_, r) => values(r)
}
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case NULL => false
case EMPTY => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r1) => nullable(r1)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case NULL => NULL
case EMPTY => NULL
case CHAR(d) => if (c == d) EMPTY else NULL
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
}
// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// extracts a string from value
def flatten(v: Val) : String = v match {
case Void => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Rec(_, v) => flatten(v)
}
def flattens(v: Val) : List[String] = v match {
case Void => List("")
case Chr(c) => List(c.toString)
case Left(v) => flattens(v)
case Right(v) => flattens(v)
case Sequ(v1, v2) => flattens(v1) ::: flattens(v2)
case Stars(vs) => vs.flatMap(flattens)
case Rec(_, v) => flattens(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Void => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// injection part
def mkeps(r: Rexp) : Val = r match {
case EMPTY => Void
case ALT(r1, r2) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
case (CHAR(d), Void) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
}
// main lexing function (produces a value)
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Void1(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(Void), f2(v))
def F_SEQ_Void2(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(v), f2(Void))
def F_RECD(f: Val => Val) = (v:Val) => v match {
case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALT(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (NULL, _) => (r2s, F_RIGHT(f2s))
case (_, NULL) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALT (r1s, r2s), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (NULL, _) => (NULL, F_ERROR)
case (_, NULL) => (NULL, F_ERROR)
case (EMPTY, _) => (r2s, F_SEQ_Void1(f1s, f2s))
case (_, EMPTY) => (r1s, F_SEQ_Void2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case RECD(x, r1) => {
val (r1s, f1s) = simp(r1)
(RECD(x, r1s), F_RECD(f1s))
}
case r => (r, F_ID)
}
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
// brute force infrastructure
def enum(n: Int, s: String) : Set[Rexp] = n match {
case 0 => Set(NULL, EMPTY) ++ s.toSet.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs ++
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2))
}
}
def ord(v1: Val, r: Rexp, v2: Val) : Boolean = (v1, r, v2) match {
case (Void, EMPTY, Void) => true
case (Chr(c1), CHAR(c2), Chr(c3)) if (c1==c2 && c1==c3) => true
case (Left(v1), ALT(r1,r2), Left(v2)) => ord(v1,r1,v2)
case (Right(v1), ALT(r1,r2), Right(v2)) => ord(v1,r2,v2)
case (Left(v1), ALT(r1,r2), Right(v2)) => flatten(v2).length <= flatten(v1).length
case (Right(v1), ALT(r1,r2), Left(v2)) => flatten(v2).length < flatten(v1).length
case (Sequ(v1,v2), SEQ(r1,r2), Sequ(v3,v4)) if(v1==v3) => ord(v2, r2, v4)
case (Sequ(v1,v2), SEQ(r1,r2), Sequ(v3,v4)) if(v1!=v3) => ord(v1, r1, v3)
case _ => false
}
def tst(r: Rexp, c: Char) : Set[(Rexp, Val, Val, Val, Val, List[String], List[String])] = {
val r_der = der(c, r)
val vs = values(r_der)
for (v1 <- vs; v2 <- vs;
if (v1 != v2 && ord(v1, r_der, v2) && ord(inj(r, c, v2), r, inj(r, c, v1)) &&
(flatten(inj(r, c, v1)) == flatten(inj(r, c, v2)))))
yield (r, v1, v2, inj(r, c, v1), inj(r, c, v2), flattens(inj(r, c, v1)), flattens(inj(r, c, v2)))
}
def tst2(r: Rexp, c: Char) : Set[(Rexp, Val, Val, Val, Val, List[String], List[String])] = {
val r_der = der(c, r)
val vs = values(r_der)
for (v1 <- vs; v2 <- vs;
if (v1 != v2 && ord(v1, r_der, v2) && ord(proj(r, c, v2), r_der, proj(r, c, v1)))
yield (r, v1, v2, proj(r, c, v1), proj(r, c, v2), flattens(inj(r, c, v1)), flattens(inj(r, c, v2)))
}
def comp(r1: (Rexp, Val, Val, Val, Val, List[String], List[String]),
r2: (Rexp, Val, Val, Val, Val, List[String], List[String])) = size(r1._1) < size(r2._1)
val smallest = enum(3, "a").flatMap(tst(_, 'a')).toList.sortWith { comp }
smallest match {
case Nil => "none"
case (r, v1, v2, v3, v4, s1, s2)::_ => List(pretty(r),
pretty(der('a', r)),
vpretty(v1),
vpretty(v2),
vpretty(v3),
vpretty(v4), s1, s2).mkString("\n") }
// Lexing Rules for a Small While Language
def PLUS(r: Rexp) = r ~ r.%
val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
val ID = SYM ~ (SYM | DIGIT).%
val NUM = PLUS(DIGIT)
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
val SEMI: Rexp = ";"
val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
val WHITESPACE = PLUS(" " | "\n" | "\t")
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("b" $ (BEGIN | END)) |
("w" $ WHITESPACE)).%
/*
val WHILE_REGS = (KEYWORD |
ID |
OP |
NUM |
SEMI |
LPAREN | RPAREN |
BEGIN | END |
WHITESPACE).%
*/
// Some Tests
//============
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println((end - start)/1.0e9)
result
}
val r1 = ("a" | "ab") ~ ("bcd" | "c")
println(lexing(r1, "abcd"))
println(values(r1).mkString("\n"))
println(values(r1).map(flatten).mkString("\n"))
val r2 = ("" | "a") ~ ("ab" | "b")
println(lexing(r2, "ab"))
println(values(r2).mkString("\n"))
println(values(r2).toList.map(flatten).mkString("\n"))
//Some experiments
//================
val f0 = ("ab" | "b" | "cb")
val f1 = der('a', f0)
val f2 = der('b', f1)
val g2 = mkeps(f2)
val g1 = inj(f1, 'b', g2)
val g0 = inj(f0, 'a', g1)
lex((("" | "a") ~ ("ab" | "b")), "ab".toList)
lex((("" | "a") ~ ("b" | "ab")), "ab".toList)
lex((("" | "a") ~ ("c" | "ab")), "ab".toList)
val reg0 = ("" | "a") ~ ("ab" | "b")
val reg1 = der('a', reg0)
val reg2 = der('b', reg1)
println(List(reg0, reg1, reg2).map(pretty).mkString("\n"))
println(lexing(reg0, "ab"))
val val0 = values(reg0)
val val1 = values(reg1)
val val2 = values(reg2)
// Two Simple Tests
//===================
println("prog0 test")
val prog0 = """read n"""
println(env(lexing_simp(WHILE_REGS, prog0)))
println("prog1 test")
val prog1 = """read n; write (n)"""
println(env(lexing_simp(WHILE_REGS, prog1)))
// Big Test
//==========
/*
val prog2 = """
i := 2;
max := 100;
while i < max do {
isprime := 1;
j := 2;
while (j * j) <= i + 1 do {
if i % j == 0 then isprime := 0 else skip;
j := j + 1
};
if isprime == 1 then write i else skip;
i := i + 1
}"""
*/
val prog2 = """
write "fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {
temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1
};
write "result";
write minus2
"""
println("Tokens")
println(env(lexing_simp(WHILE_REGS, prog2)))
for (i <- 1 to 80) {
print(i.toString + ": ")
time(lexing_simp(WHILE_REGS, prog2 * i))
}
val a0 = (EMPTY | "a") ~ (EMPTY | "ab")
val a1 = der('a', a0)
pretty(a1)
val m = mkeps(a1)
vpretty(m)
val v = inj(a0, 'a', m)
vpretty(v)
val a0 = (EMPTY | "a") ~ (EMPTY | "ab")
val a1 = der('a', a0)
pretty(a1)
values(a1).toList
val List(u2,_,u1) = values(a1).toList
vpretty(u1)
vpretty(u2)
vpretty(inj(a0,'a',u1))
vpretty(inj(a0,'a',u2))
lexing(a0, "ab")
val aa = der('a', a0)
pretty(aa)
val ab = der('b', aa)
pretty(ab)
nullable(ab)
val m = mkeps(ab)
vpretty(m)
val vb = inj(aa, 'b', m)
vpretty(vb)
val va = inj(a0, 'a', vb)
vpretty(va)