thys/ReStar.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 25 Feb 2016 20:13:41 +0000
changeset 106 489dfa0d7ec9
parent 105 80218dddbb15
child 107 6adda4a667b1
permissions -rw-r--r--
more cleaning and moving unnessary stuff to the end

   
theory ReStar
  imports "Main" 
begin


section {* Sequential Composition of Languages *}

definition
  Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where 
  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"

text {* Two Simple Properties about Sequential Composition *}

lemma seq_empty [simp]:
  shows "A ;; {[]} = A"
  and   "{[]} ;; A = A"
by (simp_all add: Sequ_def)

lemma seq_null [simp]:
  shows "A ;; {} = {}"
  and   "{} ;; A = {}"
by (simp_all add: Sequ_def)


section {* Semantic Derivatives of Languages *}

definition
  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
where
  "Der c A \<equiv> {s. [c] @ s \<in> A}"

definition 
  Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
where  
  "Ders s A \<equiv> {s' | s'. s @ s' \<in> A}"

lemma Der_null [simp]:
  shows "Der c {} = {}"
unfolding Der_def
by auto

lemma Der_empty [simp]:
  shows "Der c {[]} = {}"
unfolding Der_def
by auto

lemma Der_char [simp]:
  shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto

lemma Der_union [simp]:
  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto

lemma Der_Sequ [simp]:
  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
unfolding Der_def Sequ_def
by (auto simp add: Cons_eq_append_conv)


section {* Kleene Star for Languages *}

inductive_set
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
  for A :: "string set"
where
  start[intro]: "[] \<in> A\<star>"
| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"

lemma star_cases:
  shows "A\<star> = {[]} \<union> A ;; A\<star>"
unfolding Sequ_def
by (auto) (metis Star.simps)

lemma star_decomp: 
  assumes a: "c # x \<in> A\<star>" 
  shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
using a
by (induct x\<equiv>"c # x" rule: Star.induct) 
   (auto simp add: append_eq_Cons_conv)

lemma Der_star [simp]:
  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -    
  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
    
    by (simp only: star_cases[symmetric])
  also have "... = Der c (A ;; A\<star>)"
    by (simp only: Der_union Der_empty) (simp)
  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
    by simp
  also have "... =  (Der c A) ;; A\<star>"
    unfolding Sequ_def Der_def
    by (auto dest: star_decomp)
  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
qed


section {* Regular Expressions *}

datatype rexp =
  NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

section {* Semantics of Regular Expressions *}
 
fun
  L :: "rexp \<Rightarrow> string set"
where
  "L (NULL) = {}"
| "L (EMPTY) = {[]}"
| "L (CHAR c) = {[c]}"
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
| "L (STAR r) = (L r)\<star>"

fun
 nullable :: "rexp \<Rightarrow> bool"
where
  "nullable (NULL) = False"
| "nullable (EMPTY) = True"
| "nullable (CHAR c) = False"
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"

lemma nullable_correctness:
  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
by (induct r) (auto simp add: Sequ_def) 


section {* Values *}

datatype val = 
  Void
| Char char
| Seq val val
| Right val
| Left val
| Stars "val list"

section {* The string behind a value *}

fun 
  flat :: "val \<Rightarrow> string"
where
  "flat (Void) = []"
| "flat (Char c) = [c]"
| "flat (Left v) = flat v"
| "flat (Right v) = flat v"
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
| "flat (Stars []) = []"
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 

lemma flat_Stars [simp]:
 "flat (Stars vs) = concat (map flat vs)"
by (induct vs) (auto)


section {* Relation between values and regular expressions *}

inductive 
  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
where
 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
| "\<turnstile> Void : EMPTY"
| "\<turnstile> Char c : CHAR c"
| "\<turnstile> Stars [] : STAR r"
| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"

lemma not_nullable_flat:
  assumes "\<turnstile> v : r" "\<not> nullable r"
  shows "flat v \<noteq> []"
using assms
by (induct) (auto)

lemma Prf_flat_L:
  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
using assms
apply(induct v r rule: Prf.induct)
apply(auto simp add: Sequ_def)
done

lemma Prf_Stars:
  assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
  shows "\<turnstile> Stars vs : STAR r"
using assms
apply(induct vs)
apply (metis Prf.intros(6))
by (metis Prf.intros(7) insert_iff set_simps(2))

lemma Star_string:
  assumes "s \<in> A\<star>"
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
using assms
apply(induct rule: Star.induct)
apply(auto)
apply(rule_tac x="[]" in exI)
apply(simp)
apply(rule_tac x="s1#ss" in exI)
apply(simp)
done

lemma Star_val:
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
using assms
apply(induct ss)
apply(auto)
apply (metis empty_iff list.set(1))
by (metis concat.simps(2) list.simps(9) set_ConsD)


lemma L_flat_Prf:
  "L(r) = {flat v | v. \<turnstile> v : r}"
apply(induct r)
apply(auto dest: Prf_flat_L simp add: Sequ_def)
apply (metis Prf.intros(4) flat.simps(1))
apply (metis Prf.intros(5) flat.simps(2))
apply (metis Prf.intros(1) flat.simps(5))
apply (metis Prf.intros(2) flat.simps(3))
apply (metis Prf.intros(3) flat.simps(4))
apply(erule Prf.cases)
apply(auto)
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = x \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
apply(auto)[1]
apply(rule_tac x="Stars vs" in exI)
apply(simp)
apply(rule Prf_Stars)
apply(simp)
apply(drule Star_string)
apply(auto)
apply(rule Star_val)
apply(simp)
done


section {* Values Sets *}

definition prefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubseteq> _" [100, 100] 100)
where
  "s1 \<sqsubseteq> s2 \<equiv> \<exists>s3. s1 @ s3 = s2"

definition sprefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubset> _" [100, 100] 100)
where
  "s1 \<sqsubset> s2 \<equiv> (s1 \<sqsubseteq> s2 \<and> s1 \<noteq> s2)"

lemma length_sprefix:
  "s1 \<sqsubset> s2 \<Longrightarrow> length s1 < length s2"
unfolding sprefix_def prefix_def
by (auto)

definition Prefixes :: "string \<Rightarrow> string set" where
  "Prefixes s \<equiv> {sp. sp \<sqsubseteq> s}"

definition Suffixes :: "string \<Rightarrow> string set" where
  "Suffixes s \<equiv> rev ` (Prefixes (rev s))"

definition SPrefixes :: "string \<Rightarrow> string set" where
  "SPrefixes s \<equiv> {sp. sp \<sqsubset> s}"

definition SSuffixes :: "string \<Rightarrow> string set" where
  "SSuffixes s \<equiv> rev ` (SPrefixes (rev s))"

lemma Suffixes_in: 
  "\<exists>s1. s1 @ s2 = s3 \<Longrightarrow> s2 \<in> Suffixes s3"
unfolding Suffixes_def Prefixes_def prefix_def image_def
apply(auto)
by (metis rev_rev_ident)

lemma SSuffixes_in: 
  "\<exists>s1. s1 \<noteq> [] \<and> s1 @ s2 = s3 \<Longrightarrow> s2 \<in> SSuffixes s3"
unfolding SSuffixes_def Suffixes_def SPrefixes_def Prefixes_def sprefix_def prefix_def image_def
apply(auto)
by (metis append_self_conv rev.simps(1) rev_rev_ident)

lemma Prefixes_Cons:
  "Prefixes (c # s) = {[]} \<union> {c # sp | sp. sp \<in> Prefixes s}"
unfolding Prefixes_def prefix_def
apply(auto simp add: append_eq_Cons_conv) 
done

lemma finite_Prefixes:
  "finite (Prefixes s)"
apply(induct s)
apply(auto simp add: Prefixes_def prefix_def)[1]
apply(simp add: Prefixes_Cons)
done

lemma finite_Suffixes:
  "finite (Suffixes s)"
unfolding Suffixes_def
apply(rule finite_imageI)
apply(rule finite_Prefixes)
done

lemma prefix_Cons:
  "((c # s1) \<sqsubseteq> (c # s2)) = (s1 \<sqsubseteq> s2)"
apply(auto simp add: prefix_def)
done

lemma prefix_append:
  "((s @ s1) \<sqsubseteq> (s @ s2)) = (s1 \<sqsubseteq> s2)"
apply(induct s)
apply(simp)
apply(simp add: prefix_Cons)
done


definition Values :: "rexp \<Rightarrow> string \<Rightarrow> val set" where
  "Values r s \<equiv> {v. \<turnstile> v : r \<and> flat v \<sqsubseteq> s}"

definition rest :: "val \<Rightarrow> string \<Rightarrow> string" where
  "rest v s \<equiv> drop (length (flat v)) s"

lemma rest_Nil:
  "rest v [] = []"
apply(simp add: rest_def)
done

lemma rest_Suffixes:
  "rest v s \<in> Suffixes s"
unfolding rest_def
by (metis Suffixes_in append_take_drop_id)

lemma Values_recs:
  "Values (NULL) s = {}"
  "Values (EMPTY) s = {Void}"
  "Values (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" 
  "Values (ALT r1 r2) s = {Left v | v. v \<in> Values r1 s} \<union> {Right v | v. v \<in> Values r2 s}"
  "Values (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}"
  "Values (STAR r) s = 
      {Stars []} \<union> {Stars (v # vs) | v vs. v \<in> Values r s \<and> Stars vs \<in> Values (STAR r) (rest v s)}"
unfolding Values_def
apply(auto)
(*NULL*)
apply(erule Prf.cases)
apply(simp_all)[7]
(*EMPTY*)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(rule Prf.intros)
apply (metis append_Nil prefix_def)
(*CHAR*)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(rule Prf.intros)
apply(erule Prf.cases)
apply(simp_all)[7]
(*ALT*)
apply(erule Prf.cases)
apply(simp_all)[7]
apply (metis Prf.intros(2))
apply (metis Prf.intros(3))
(*SEQ*)
apply(erule Prf.cases)
apply(simp_all)[7]
apply (simp add: append_eq_conv_conj prefix_def rest_def)
apply (metis Prf.intros(1))
apply (simp add: append_eq_conv_conj prefix_def rest_def)
(*STAR*)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(rule conjI)
apply(simp add: prefix_def)
apply(auto)[1]
apply(simp add: prefix_def)
apply(auto)[1]
apply (metis append_eq_conv_conj rest_def)
apply (metis Prf.intros(6))
apply (metis append_Nil prefix_def)
apply (metis Prf.intros(7))
by (metis append_eq_conv_conj prefix_append prefix_def rest_def)

lemma finite_image_set2:
  "finite {x. P x} \<Longrightarrow> finite {y. Q y} \<Longrightarrow> finite {(x, y) | x y. P x \<and> Q y}"
  by (rule finite_subset [where B = "\<Union>x \<in> {x. P x}. \<Union>y \<in> {y. Q y}. {(x, y)}"]) auto

section {* Sulzmann functions *}

fun 
  mkeps :: "rexp \<Rightarrow> val"
where
  "mkeps(EMPTY) = Void"
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
| "mkeps(STAR r) = Stars []"

section {* Derivatives *}

fun
 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
  "der c (NULL) = NULL"
| "der c (EMPTY) = NULL"
| "der c (CHAR c') = (if c = c' then EMPTY else NULL)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) = 
     (if nullable r1
      then ALT (SEQ (der c r1) r2) (der c r2)
      else SEQ (der c r1) r2)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"

fun 
 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
  "ders [] r = r"
| "ders (c # s) r = ders s (der c r)"


lemma der_correctness:
  shows "L (der c r) = Der c (L r)"
apply(induct r) 
apply(simp_all add: nullable_correctness)
done

lemma ders_correctness:
  shows "L (ders s r) = Ders s (L r)"
apply(induct s arbitrary: r) 
apply(simp add: Ders_def)
apply(simp)
apply(subst der_correctness)
apply(simp add: Ders_def Der_def)
done

section {* Injection function *}

fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
where
  "injval (CHAR d) c Void = Char d"
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 

fun 
  lex :: "rexp \<Rightarrow> string \<Rightarrow> val option"
where
  "lex r [] = (if nullable r then Some(mkeps r) else None)"
| "lex r (c#s) = (case (lex (der c r) s) of  
                    None \<Rightarrow> None
                  | Some(v) \<Rightarrow> Some(injval r c v))"

fun 
  lex2 :: "rexp \<Rightarrow> string \<Rightarrow> val"
where
  "lex2 r [] = mkeps r"
| "lex2 r (c#s) = injval r c (lex2 (der c r) s)"

section {* Projection function *}

fun projval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
where
  "projval (CHAR d) c _ = Void"
| "projval (ALT r1 r2) c (Left v1) = Left (projval r1 c v1)"
| "projval (ALT r1 r2) c (Right v2) = Right (projval r2 c v2)"
| "projval (SEQ r1 r2) c (Seq v1 v2) = 
     (if flat v1 = [] then Right(projval r2 c v2) 
      else if nullable r1 then Left (Seq (projval r1 c v1) v2)
                          else Seq (projval r1 c v1) v2)"
| "projval (STAR r) c (Stars (v # vs)) = Seq (projval r c v) (Stars vs)"


lemma mkeps_nullable:
  assumes "nullable(r)" 
  shows "\<turnstile> mkeps r : r"
using assms
apply(induct rule: nullable.induct)
apply(auto intro: Prf.intros)
done

lemma mkeps_flat:
  assumes "nullable(r)" 
  shows "flat (mkeps r) = []"
using assms
apply(induct rule: nullable.induct)
apply(auto)
done


lemma v3:
  assumes "\<turnstile> v : der c r" 
  shows "\<turnstile> (injval r c v) : r"
using assms
apply(induct arbitrary: v rule: der.induct)
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(case_tac "c = c'")
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply (metis Prf.intros(5))
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply (metis Prf.intros(2))
apply (metis Prf.intros(3))
apply(simp)
apply(case_tac "nullable r1")
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)[1]
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)[1]
apply (metis Prf.intros(1))
apply(auto)[1]
apply (metis Prf.intros(1) mkeps_nullable)
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)[1]
apply(rule Prf.intros)
apply(auto)[2]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(clarify)
apply(rotate_tac 2)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)
apply (metis Prf.intros(6) Prf.intros(7))
by (metis Prf.intros(7))



lemma v4:
  assumes "\<turnstile> v : der c r" 
  shows "flat (injval r c v) = c # (flat v)"
using assms
apply(induct arbitrary: v rule: der.induct)
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(case_tac "c = c'")
apply(simp)
apply(auto)[1]
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(case_tac "nullable r1")
apply(simp)
apply(erule Prf.cases)
apply(simp_all (no_asm_use))[7]
apply(auto)[1]
apply(erule Prf.cases)
apply(simp_all)[7]
apply(clarify)
apply(simp only: injval.simps flat.simps)
apply(auto)[1]
apply (metis mkeps_flat)
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)
apply(rotate_tac 2)
apply(erule Prf.cases)
apply(simp_all)[7]
done



section {* Our Alternative Posix definition *}

inductive 
  PMatch :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
where
  "[] \<in> EMPTY \<rightarrow> Void"
| "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
| "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
| "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
| "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
| "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
| "[] \<in> STAR r \<rightarrow> Stars []"

lemma PMatch1:
  assumes "s \<in> r \<rightarrow> v"
  shows "\<turnstile> v : r" "flat v = s"
using assms
apply(induct s r v rule: PMatch.induct)
apply(auto)
apply (metis Prf.intros(4))
apply (metis Prf.intros(5))
apply (metis Prf.intros(2))
apply (metis Prf.intros(3))
apply (metis Prf.intros(1))
apply (metis Prf.intros(7))
by (metis Prf.intros(6))

lemma PMatch_mkeps:
  assumes "nullable r"
  shows "[] \<in> r \<rightarrow> mkeps r"
using assms
apply(induct r)
apply(auto)
apply (metis PMatch.intros(1))
apply(subst append.simps(1)[symmetric])
apply (rule PMatch.intros)
apply(simp)
apply(simp)
apply(auto)[1]
apply (rule PMatch.intros)
apply(simp)
apply (rule PMatch.intros)
apply(simp)
apply (rule PMatch.intros)
apply(simp)
apply (metis nullable_correctness)
apply(metis PMatch.intros(7))
done

lemma PMatch_determ:
  shows "\<lbrakk>s \<in> r \<rightarrow> v1; s \<in> r \<rightarrow> v2\<rbrakk> \<Longrightarrow> v1 = v2"
  and   "\<lbrakk>s \<in> (STAR r) \<rightarrow> Stars vs1; s \<in> (STAR r) \<rightarrow> Stars vs2\<rbrakk> \<Longrightarrow> vs1 = vs2"
apply(induct v1 and vs1 arbitrary: s r v2 and s r vs2 rule: val.inducts)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(subgoal_tac "s1 = s1a \<and> s2 = s2a")
apply metis
apply(rule conjI)
apply(simp add: append_eq_append_conv2)
apply(auto)[1]
apply (metis PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis PMatch1(1) PMatch1(2) Prf_flat_L)
apply(simp add: append_eq_append_conv2)
apply(auto)[1]
apply (metis PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis PMatch1(1) PMatch1(2) Prf_flat_L)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply (metis PMatch1(1) PMatch1(2) Prf_flat_L)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply (metis PMatch1(1) PMatch1(2) Prf_flat_L)
(* star case *)
defer
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply (metis PMatch1(2))
apply(rotate_tac  3)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(subgoal_tac "s1 = s1a \<and> s2 = s2a")
apply metis
apply(simp add: append_eq_append_conv2)
apply(auto)[1]
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply (metis PMatch1(2))
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(subgoal_tac "s1 = s1a \<and> s2 = s2a")
apply(drule_tac x="s1 @ s2" in meta_spec)
apply(drule_tac x="rb" in meta_spec)
apply(drule_tac x="(va#vsa)" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply (metis L.simps(6) PMatch.intros(6))
apply (metis L.simps(6) PMatch.intros(6))
apply(simp add: append_eq_append_conv2)
apply(auto)[1]
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L)
apply (metis PMatch1(2))
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
by (metis PMatch1(2))



lemma PMatch_Values:
  assumes "s \<in> r \<rightarrow> v"
  shows "v \<in> Values r s"
using assms
apply(simp add: Values_def PMatch1)
by (metis append_Nil2 prefix_def)

(* a proof that does not need proj *)
lemma PMatch2_roy_version:
  assumes "s \<in> (der c r) \<rightarrow> v"
  shows "(c#s) \<in> r \<rightarrow> (injval r c v)"
using assms
apply(induct r arbitrary: s v c rule: rexp.induct)
apply(auto)
(* NULL case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* EMPTY case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* CHAR case *)
apply(case_tac "c = char")
apply(simp)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply (metis PMatch.intros(2))
apply(simp)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* ALT case *)
prefer 2
apply(erule PMatch.cases)
apply(simp_all)[7]
apply (metis PMatch.intros(3))
apply(clarify)
apply(rule PMatch.intros)
apply metis
apply(simp add: der_correctness Der_def)
(* SEQ case *)
apply(case_tac "nullable rexp1")
apply(simp)
prefer 2
(* not-nullbale case *)
apply(simp)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(subst append.simps(2)[symmetric])
apply(rule PMatch.intros)
apply metis
apply metis
apply(auto)[1]
apply(simp add: der_correctness Der_def)
apply(auto)[1]
(* nullable case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* left case *)
apply(clarify)
apply(erule PMatch.cases)
apply(simp_all)[4]
prefer 2
apply(clarify)
prefer 2
apply(clarify)
apply(clarify)
apply(simp (no_asm))
apply(subst append.simps(2)[symmetric])
apply(rule PMatch.intros)
apply metis
apply metis
apply(erule contrapos_nn)
apply(erule exE)+
apply(auto)[1]
apply(simp add: der_correctness Der_def)
apply metis
(* right interesting case *)
apply(clarify)
apply(subst append.simps(1)[symmetric])
apply(rule PMatch.intros)
apply (metis PMatch_mkeps)
apply metis
apply(rule notI)
apply(clarify)
apply(simp)
apply(simp add: der_correctness)
apply(simp only: Der_def Sequ_def)
apply(simp)
apply (metis Cons_eq_append_conv)
(* Stars case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(rotate_tac 2)
apply(frule_tac PMatch1)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(subst append.simps(2)[symmetric])
apply(rule PMatch.intros)
apply metis
apply(auto)[1]
apply(rule PMatch.intros)
apply(simp)
apply(simp)
apply(simp)
apply (metis L.simps(6))
apply(subst v4)
apply (metis PMatch1)
apply(simp)
apply(auto)[1]
apply(drule_tac x="s\<^sub>3" in spec)
apply(drule mp)
defer
apply metis
apply(clarify)
apply(drule_tac x="s1" in meta_spec)
apply(drule_tac x="v1" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(simp)
apply(rotate_tac 2)
apply(drule PMatch.intros(6))
apply(rule PMatch.intros(7))
(* HERE *)
apply (metis PMatch1(1) list.distinct(1) v4)
apply (metis Nil_is_append_conv)
apply(simp)
apply(subst der_correctness)
apply(simp add: Der_def)
done 


lemma lex_correct1:
  assumes "s \<notin> L r"
  shows "lex r s = None"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis nullable_correctness)
apply(auto)
apply(drule_tac x="der a r" in meta_spec)
apply(drule meta_mp)
apply(auto)
apply(simp add: L_flat_Prf)
by (metis v3 v4)


lemma lex_correct2:
  assumes "s \<in> L r"
  shows "\<exists>v. lex r s = Some(v) \<and> \<turnstile> v : r \<and> flat v = s"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis mkeps_flat mkeps_nullable nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(drule meta_mp)
apply(simp add: der_correctness Der_def)
apply(auto)
apply (metis v3)
apply(rule v4)
by simp

lemma lex_correct3:
  assumes "s \<in> L r"
  shows "\<exists>v. lex r s = Some(v) \<and> s \<in> r \<rightarrow> v"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis PMatch_mkeps nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(drule meta_mp)
apply(simp add: der_correctness Der_def)
apply(auto)
by (metis PMatch2_roy_version)

lemma lex_correct5:
  assumes "s \<in> L r"
  shows "s \<in> r \<rightarrow> (lex2 r s)"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis PMatch_mkeps nullable_correctness)
apply(simp)
apply(rule PMatch2_roy_version)
apply(drule_tac x="der a r" in meta_spec)
apply(drule meta_mp)
apply(simp add: der_correctness Der_def)
apply(auto)
done

lemma 
  "lex2 (ALT (CHAR a) (ALT (CHAR b) (SEQ (CHAR a) (CHAR b)))) [a,b] = Right (Right (Seq (Char a) (Char b)))"
apply(simp)
done



section {* Connection with Sulzmann's Ordering of values *}

inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<succ>_ _" [100, 100, 100] 100)
where
  "v2 \<succ>r2 v2' \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1 v2')" 
| "\<lbrakk>v1 \<succ>r1 v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')" 
| "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Right v2)"
| "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Left v1)"
| "v2 \<succ>r2 v2' \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Right v2')"
| "v1 \<succ>r1 v1' \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Left v1')"
| "Void \<succ>EMPTY Void"
| "(Char c) \<succ>(CHAR c) (Char c)"
| "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) \<succ>(STAR r) (Stars (v # vs))"
| "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) \<succ>(STAR r) (Stars [])"
| "\<lbrakk>v1 \<succ>r v2; v1 \<noteq> v2\<rbrakk> \<Longrightarrow> (Stars (v1 # vs1)) \<succ>(STAR r) (Stars (v2 # vs2))"
| "(Stars vs1) \<succ>(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) \<succ>(STAR r) (Stars (v # vs2))"
| "(Stars []) \<succ>(STAR r) (Stars [])"


(* non-problematic values...needed in order to fix the *) 
(* proj lemma in Sulzmann & lu *)

inductive 
  NPrf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
where
 "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
| "\<Turnstile> Void : EMPTY"
| "\<Turnstile> Char c : CHAR c"
| "\<Turnstile> Stars [] : STAR r"
| "\<lbrakk>\<Turnstile> v : r; \<Turnstile> Stars vs : STAR r; flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (v # vs) : STAR r"

lemma NPrf_imp_Prf:
  assumes "\<Turnstile> v : r" 
  shows "\<turnstile> v : r"
using assms
apply(induct)
apply(auto intro: Prf.intros)
done

lemma Star_valN:
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r)"
using assms
apply(induct ss)
apply(auto)
apply (metis empty_iff list.set(1))
by (metis concat.simps(2) list.simps(9) set_ConsD)

lemma NPrf_Prf_val:
  shows "\<turnstile> v : r \<Longrightarrow> \<exists>v'. flat v' = flat v \<and> \<Turnstile> v' : r"
  and   "\<turnstile> Stars vs : r \<Longrightarrow> \<exists>vs'. flat (Stars vs') = flat (Stars vs) \<and> \<Turnstile> Stars vs' : r"
using assms
apply(induct v and vs arbitrary: r and r rule: val.inducts)
apply(auto)[1]
apply(erule Prf.cases)
apply(simp_all)[7]
apply(rule_tac x="Void" in exI)
apply(simp)
apply(rule NPrf.intros)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(rule_tac x="Char c" in exI)
apply(simp)
apply(rule NPrf.intros)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)[1]
apply(drule_tac x="r1" in meta_spec)
apply(drule_tac x="r2" in meta_spec)
apply(simp)
apply(auto)[1]
apply(rule_tac x="Seq v' v'a" in exI)
apply(simp)
apply (metis NPrf.intros(1))
apply(erule Prf.cases)
apply(simp_all)[7]
apply(clarify)
apply(drule_tac x="r2" in meta_spec)
apply(simp)
apply(auto)[1]
apply(rule_tac x="Right v'" in exI)
apply(simp)
apply (metis NPrf.intros)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(clarify)
apply(drule_tac x="r1" in meta_spec)
apply(simp)
apply(auto)[1]
apply(rule_tac x="Left v'" in exI)
apply(simp)
apply (metis NPrf.intros)
apply(drule_tac x="r" in meta_spec)
apply(simp)
apply(auto)[1]
apply(rule_tac x="Stars vs'" in exI)
apply(simp)
apply(rule_tac x="[]" in exI)
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply (metis NPrf.intros(6))
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)[1]
apply(drule_tac x="ra" in meta_spec)
apply(simp)
apply(drule_tac x="STAR ra" in meta_spec)
apply(simp)
apply(auto)
apply(case_tac "flat v = []")
apply(rule_tac x="vs'" in exI)
apply(simp)
apply(rule_tac x="v' # vs'" in exI)
apply(simp)
apply(rule NPrf.intros)
apply(auto)
done

lemma NPrf_Prf:
  shows "{flat v | v. \<turnstile> v : r} = {flat v | v. \<Turnstile> v : r}"
apply(auto)
apply (metis NPrf_Prf_val(1))
by (metis NPrf_imp_Prf)

lemma NPrf_flat_L:
  assumes "\<Turnstile> v : r" shows "flat v \<in> L r"
using assms
by (metis NPrf_imp_Prf Prf_flat_L)


lemma L_flat_NPrf:
  "L(r) = {flat v | v. \<Turnstile> v : r}"
by (metis L_flat_Prf NPrf_Prf)



lemma v3_proj:
  assumes "\<Turnstile> v : r" and "\<exists>s. (flat v) = c # s"
  shows "\<Turnstile> (projval r c v) : der c r"
using assms
apply(induct rule: NPrf.induct)
prefer 4
apply(simp)
prefer 4
apply(simp)
apply (metis NPrf.intros(4))
prefer 2
apply(simp)
apply (metis NPrf.intros(2))
prefer 2
apply(simp)
apply (metis NPrf.intros(3))
apply(auto)
apply(rule NPrf.intros)
apply(simp)
apply (metis NPrf_imp_Prf not_nullable_flat)
apply(rule NPrf.intros)
apply(rule NPrf.intros)
apply (metis Cons_eq_append_conv)
apply(simp)
apply(rule NPrf.intros)
apply (metis Cons_eq_append_conv)
apply(simp)
(* Stars case *)
apply(rule NPrf.intros)
apply (metis Cons_eq_append_conv)
apply(auto)
done

lemma v4_proj:
  assumes "\<Turnstile> v : r" and "\<exists>s. (flat v) = c # s"
  shows "c # flat (projval r c v) = flat v"
using assms
apply(induct rule: NPrf.induct)
prefer 4
apply(simp)
prefer 4
apply(simp)
prefer 2
apply(simp)
prefer 2
apply(simp)
apply(auto)
apply (metis Cons_eq_append_conv)
apply(simp add: append_eq_Cons_conv)
apply(auto)
done

lemma v4_proj2:
  assumes "\<Turnstile> v : r" and "(flat v) = c # s"
  shows "flat (projval r c v) = s"
using assms
by (metis list.inject v4_proj)

lemma PMatch1N:
  assumes "s \<in> r \<rightarrow> v"
  shows "\<Turnstile> v : r" 
using assms
apply(induct s r v rule: PMatch.induct)
apply(auto)
apply (metis NPrf.intros(4))
apply (metis NPrf.intros(5))
apply (metis NPrf.intros(2))
apply (metis NPrf.intros(3))
apply (metis NPrf.intros(1))
apply(rule NPrf.intros)
apply(simp)
apply(simp)
apply(simp)
apply(rule NPrf.intros)
done

(* this version needs proj *)
lemma PMatch2:
  assumes "s \<in> (der c r) \<rightarrow> v"
  shows "(c#s) \<in> r \<rightarrow> (injval r c v)"
using assms
apply(induct c r arbitrary: s v rule: der.induct)
apply(auto)
(* NULL case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* EMPTY case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* CHAR case *)
apply(case_tac "c = c'")
apply(simp)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply (metis PMatch.intros(2))
apply(simp)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* ALT case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply (metis PMatch.intros(3))
apply(clarify)
apply(rule PMatch.intros)
apply metis
apply(simp add: der_correctness Der_def)
(* SEQ case *)
apply(case_tac "nullable r1")
apply(simp)
prefer 2
(* not-nullbale case *)
apply(simp)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(subst append.simps(2)[symmetric])
apply(rule PMatch.intros)
apply metis
apply metis
apply(auto)[1]
apply(simp add: der_correctness Der_def)
apply(auto)[1]
(* nullable case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
(* left case *)
apply(clarify)
apply(erule PMatch.cases)
apply(simp_all)[4]
prefer 2
apply(clarify)
prefer 2
apply(clarify)
apply(clarify)
apply(simp (no_asm))
apply(subst append.simps(2)[symmetric])
apply(rule PMatch.intros)
apply metis
apply metis
apply(erule contrapos_nn)
apply(erule exE)+
apply(auto)[1]
apply(simp add: der_correctness Der_def)
apply metis
(* right interesting case *)
apply(clarify)
apply(simp)
apply(subst (asm) L.simps(4)[symmetric])
apply(simp only: L_flat_Prf)
apply(simp)
apply(subst append.simps(1)[symmetric])
apply(rule PMatch.intros)
apply (metis PMatch_mkeps)
apply metis
apply(auto)
apply(simp only: L_flat_NPrf)
apply(simp)
apply(auto)
apply(drule_tac x="Seq (projval r1 c v) vb" in spec)
apply(drule mp)
apply(simp)
apply (metis append_Cons butlast_snoc list.sel(1) neq_Nil_conv rotate1.simps(2) v4_proj2)
apply(subgoal_tac "\<turnstile> projval r1 c v : der c r1")
apply (metis NPrf_imp_Prf Prf.intros(1))
apply(rule NPrf_imp_Prf)
apply(rule v3_proj)
apply(simp)
apply (metis Cons_eq_append_conv)
(* Stars case *)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(clarify)
apply(rotate_tac 2)
apply(frule_tac PMatch1)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(subst append.simps(2)[symmetric])
apply(rule PMatch.intros)
apply metis
apply(auto)[1]
apply(rule PMatch.intros)
apply(simp)
apply(simp)
apply(simp)
apply (metis L.simps(6))
apply(subst v4)
apply (metis NPrf_imp_Prf PMatch1N)
apply(simp)
apply(auto)[1]
apply(drule_tac x="s\<^sub>3" in spec)
apply(drule mp)
defer
apply metis
apply(clarify)
apply(drule_tac x="s1" in meta_spec)
apply(drule_tac x="v1" in meta_spec)
apply(simp)
apply(rotate_tac 2)
apply(drule PMatch.intros(6))
apply(rule PMatch.intros(7))
apply (metis PMatch1(1) list.distinct(1) v4)
apply (metis Nil_is_append_conv)
apply(simp)
apply(subst der_correctness)
apply(simp add: Der_def)
done 

lemma lex_correct4:
  assumes "s \<in> L r"
  shows "\<exists>v. lex r s = Some(v) \<and> \<Turnstile> v : r \<and> flat v = s"
using lex_correct3[OF assms]
apply(auto)
apply (metis PMatch1N)
by (metis PMatch1(2))


end