theory RegLangs+ −
imports Main "HOL-Library.Sublist"+ −
begin+ −
+ −
section \<open>Sequential Composition of Languages\<close>+ −
+ −
definition+ −
Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)+ −
where + −
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"+ −
+ −
text \<open>Two Simple Properties about Sequential Composition\<close>+ −
+ −
lemma Sequ_empty_string [simp]:+ −
shows "A ;; {[]} = A"+ −
and "{[]} ;; A = A"+ −
by (simp_all add: Sequ_def)+ −
+ −
lemma Sequ_empty [simp]:+ −
shows "A ;; {} = {}"+ −
and "{} ;; A = {}"+ −
by (simp_all add: Sequ_def)+ −
+ −
+ −
section \<open>Semantic Derivative (Left Quotient) of Languages\<close>+ −
+ −
definition+ −
Der :: "char \<Rightarrow> string set \<Rightarrow> string set"+ −
where+ −
"Der c A \<equiv> {s. c # s \<in> A}"+ −
+ −
definition+ −
Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"+ −
where+ −
"Ders s A \<equiv> {s'. s @ s' \<in> A}"+ −
+ −
lemma Der_null [simp]:+ −
shows "Der c {} = {}"+ −
unfolding Der_def+ −
by auto+ −
+ −
lemma Der_empty [simp]:+ −
shows "Der c {[]} = {}"+ −
unfolding Der_def+ −
by auto+ −
+ −
lemma Der_char [simp]:+ −
shows "Der c {[d]} = (if c = d then {[]} else {})"+ −
unfolding Der_def+ −
by auto+ −
+ −
lemma Der_union [simp]:+ −
shows "Der c (A \<union> B) = Der c A \<union> Der c B"+ −
unfolding Der_def+ −
by auto+ −
+ −
lemma Der_Sequ [simp]:+ −
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"+ −
unfolding Der_def Sequ_def+ −
by (auto simp add: Cons_eq_append_conv)+ −
+ −
+ −
section \<open>Kleene Star for Languages\<close>+ −
+ −
inductive_set+ −
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)+ −
for A :: "string set"+ −
where+ −
start[intro]: "[] \<in> A\<star>"+ −
| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"+ −
+ −
(* Arden's lemma *)+ −
+ −
lemma Star_cases:+ −
shows "A\<star> = {[]} \<union> A ;; A\<star>"+ −
unfolding Sequ_def+ −
by (auto) (metis Star.simps)+ −
+ −
lemma Star_decomp: + −
assumes "c # x \<in> A\<star>" + −
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"+ −
using assms+ −
by (induct x\<equiv>"c # x" rule: Star.induct) + −
(auto simp add: append_eq_Cons_conv)+ −
+ −
lemma Star_Der_Sequ: + −
shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"+ −
unfolding Der_def Sequ_def+ −
by(auto simp add: Star_decomp)+ −
+ −
+ −
lemma Der_star[simp]:+ −
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"+ −
proof - + −
have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" + −
by (simp only: Star_cases[symmetric])+ −
also have "... = Der c (A ;; A\<star>)"+ −
by (simp only: Der_union Der_empty) (simp)+ −
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"+ −
by simp+ −
also have "... = (Der c A) ;; A\<star>"+ −
using Star_Der_Sequ by auto+ −
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .+ −
qed+ −
+ −
lemma Star_concat:+ −
assumes "\<forall>s \<in> set ss. s \<in> A" + −
shows "concat ss \<in> A\<star>"+ −
using assms by (induct ss) (auto)+ −
+ −
lemma Star_split:+ −
assumes "s \<in> A\<star>"+ −
shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"+ −
using assms+ −
apply(induct rule: Star.induct)+ −
using concat.simps(1) apply fastforce+ −
apply(clarify)+ −
by (metis append_Nil concat.simps(2) set_ConsD)+ −
+ −
+ −
+ −
section \<open>Regular Expressions\<close>+ −
+ −
datatype rexp =+ −
ZERO+ −
| ONE+ −
| CH char+ −
| SEQ rexp rexp+ −
| ALT rexp rexp+ −
| STAR rexp+ −
+ −
section \<open>Semantics of Regular Expressions\<close>+ −
+ −
fun+ −
L :: "rexp \<Rightarrow> string set"+ −
where+ −
"L (ZERO) = {}"+ −
| "L (ONE) = {[]}"+ −
| "L (CH c) = {[c]}"+ −
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"+ −
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"+ −
| "L (STAR r) = (L r)\<star>"+ −
+ −
+ −
section \<open>Nullable, Derivatives\<close>+ −
+ −
fun+ −
nullable :: "rexp \<Rightarrow> bool"+ −
where+ −
"nullable (ZERO) = False"+ −
| "nullable (ONE) = True"+ −
| "nullable (CH c) = False"+ −
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"+ −
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"+ −
| "nullable (STAR r) = True"+ −
+ −
+ −
fun+ −
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"+ −
where+ −
"der c (ZERO) = ZERO"+ −
| "der c (ONE) = ZERO"+ −
| "der c (CH d) = (if c = d then ONE else ZERO)"+ −
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"+ −
| "der c (SEQ r1 r2) = + −
(if nullable r1+ −
then ALT (SEQ (der c r1) r2) (der c r2)+ −
else SEQ (der c r1) r2)"+ −
| "der c (STAR r) = SEQ (der c r) (STAR r)"+ −
+ −
fun + −
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"+ −
where+ −
"ders [] r = r"+ −
| "ders (c # s) r = ders s (der c r)"+ −
+ −
+ −
lemma nullable_correctness:+ −
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"+ −
by (induct r) (auto simp add: Sequ_def) + −
+ −
lemma der_correctness:+ −
shows "L (der c r) = Der c (L r)"+ −
by (induct r) (simp_all add: nullable_correctness)+ −
+ −
lemma ders_correctness:+ −
shows "L (ders s r) = Ders s (L r)"+ −
by (induct s arbitrary: r)+ −
(simp_all add: Ders_def der_correctness Der_def)+ −
+ −
lemma ders_append:+ −
shows "ders (s1 @ s2) r = ders s2 (ders s1 r)"+ −
by (induct s1 arbitrary: s2 r) (auto)+ −
+ −
lemma ders_snoc:+ −
shows "ders (s @ [c]) r = der c (ders s r)"+ −
by (simp add: ders_append)+ −
+ −
+ −
(*+ −
datatype ctxt = + −
SeqC rexp bool+ −
| AltCL rexp+ −
| AltCH rexp + −
| StarC rexp + −
+ −
function+ −
down :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list"+ −
and up :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list"+ −
where+ −
"down c (SEQ r1 r2) ctxts =+ −
(if (nullable r1) then down c r1 (SeqC r2 True # ctxts) + −
else down c r1 (SeqC r2 False # ctxts))"+ −
| "down c (CH d) ctxts = + −
(if c = d then up c ONE ctxts else up c ZERO ctxts)"+ −
| "down c ONE ctxts = up c ZERO ctxts"+ −
| "down c ZERO ctxts = up c ZERO ctxts"+ −
| "down c (ALT r1 r2) ctxts = down c r1 (AltCH r2 # ctxts)"+ −
| "down c (STAR r1) ctxts = down c r1 (StarC r1 # ctxts)"+ −
| "up c r [] = (r, [])"+ −
| "up c r (SeqC r2 False # ctxts) = up c (SEQ r r2) ctxts"+ −
| "up c r (SeqC r2 True # ctxts) = down c r2 (AltCL (SEQ r r2) # ctxts)"+ −
| "up c r (AltCL r1 # ctxts) = up c (ALT r1 r) ctxts"+ −
| "up c r (AltCH r2 # ctxts) = down c r2 (AltCL r # ctxts)"+ −
| "up c r (StarC r1 # ctxts) = up c (SEQ r (STAR r1)) ctxts"+ −
apply(pat_completeness)+ −
apply(auto)+ −
done+ −
+ −
termination+ −
sorry+ −
+ −
*)+ −
+ −
+ −
end+ −