thys3/BasicIdentities.thy
author Chengsong
Fri, 23 Sep 2022 00:44:22 +0100
changeset 602 46db6ae66448
parent 556 c27f04bb2262
child 642 6c13f76c070b
permissions -rw-r--r--
chap1

theory BasicIdentities 
  imports "RfltsRdistinctProps" 
begin



lemma rder_rsimp_ALTs_commute:
  shows "  (rder x (rsimp_ALTs rs)) = rsimp_ALTs (map (rder x) rs)"
  apply(induct rs)
   apply simp
  apply(case_tac rs)
   apply simp
  apply auto
  done



lemma rsimp_aalts_smaller:
  shows "rsize (rsimp_ALTs  rs) \<le> rsize (RALTS rs)"
  apply(induct rs)
   apply simp
  apply simp
  apply(case_tac "rs = []")
   apply simp
  apply(subgoal_tac "\<exists>rsp ap. rs = ap # rsp")
   apply(erule exE)+
   apply simp
  apply simp
  by(meson neq_Nil_conv)
  




lemma rSEQ_mono:
  shows "rsize (rsimp_SEQ r1 r2) \<le>rsize (RSEQ r1 r2)"
  apply auto
  apply(induct r1)
       apply auto
      apply(case_tac "r2")
       apply simp_all
     apply(case_tac r2)
          apply simp_all
     apply(case_tac r2)
         apply simp_all
     apply(case_tac r2)
        apply simp_all
     apply(case_tac r2)
  apply simp_all
  done

lemma ralts_cap_mono:
  shows "rsize (RALTS rs) \<le> Suc (rsizes rs)"
  by simp




lemma rflts_mono:
  shows "rsizes (rflts rs) \<le> rsizes rs"
  apply(induct rs)
  apply simp
  apply(case_tac "a = RZERO")
   apply simp
  apply(case_tac "\<exists>rs1. a = RALTS rs1")
  apply(erule exE)
   apply simp
  apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)")
   prefer 2
  
  using rflts_def_idiot apply blast
  apply simp
  done

lemma rdistinct_smaller: 
  shows "rsizes (rdistinct rs ss) \<le> rsizes rs"
  apply (induct rs arbitrary: ss)
   apply simp
  by (simp add: trans_le_add2)


lemma rsimp_alts_mono :
  shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa)  \<Longrightarrow>
      rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (rsizes x)"
  apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} )) 
                    \<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))")
  prefer 2
  using rsimp_aalts_smaller apply auto[1]
  apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc (rsizes (rdistinct (rflts (map rsimp x)) {}))")
  prefer 2
  using ralts_cap_mono apply blast
  apply(subgoal_tac "rsizes (rdistinct (rflts (map rsimp x)) {}) \<le> rsizes (rflts (map rsimp x))")
  prefer 2
  using rdistinct_smaller apply presburger
  apply(subgoal_tac "rsizes (rflts (map rsimp x)) \<le> rsizes (map rsimp x)")
  prefer 2
  using rflts_mono apply blast
  apply(subgoal_tac "rsizes (map rsimp x) \<le> rsizes x")
  prefer 2
  
  apply (simp add: sum_list_mono)
  by linarith





lemma rsimp_mono:
  shows "rsize (rsimp r) \<le> rsize r"
  apply(induct r)
  apply simp_all
  apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))")
    apply force
  using rSEQ_mono
   apply presburger
  using rsimp_alts_mono by auto

lemma idiot:
  shows "rsimp_SEQ RONE r = r"
  apply(case_tac r)
       apply simp_all
  done





lemma idiot2:
  shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk>
    \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2"
  apply(case_tac r1)
       apply(case_tac r2)
  apply simp_all
     apply(case_tac r2)
  apply simp_all
     apply(case_tac r2)
  apply simp_all
   apply(case_tac r2)
  apply simp_all
  apply(case_tac r2)
       apply simp_all
  done

lemma rders__onechar:
  shows " (rders_simp r [c]) =  (rsimp (rders r [c]))"
  by simp

lemma rders_append:
  "rders c (s1 @ s2) = rders (rders c s1) s2"
  apply(induct s1 arbitrary: c s2)
  apply(simp_all)
  done

lemma rders_simp_append:
  "rders_simp c (s1 @ s2) = rders_simp (rders_simp c s1) s2"
  apply(induct s1 arbitrary: c s2)
   apply(simp_all)
  done


lemma rders_simp_one_char:
  shows "rders_simp r [c] = rsimp (rder c r)"
  apply auto
  done





lemma  k0a:
  shows "rflts [RALTS rs] =   rs"
  apply(simp)
  done

lemma bbbbs:
  assumes "good r" "r = RALTS rs"
  shows "rsimp_ALTs  (rflts [r]) = RALTS rs"
  using  assms
  by (metis good.simps(4) good.simps(5) k0a rsimp_ALTs.elims)

lemma bbbbs1:
  shows "nonalt r \<or> (\<exists> rs. r  = RALTS  rs)"
  by (meson nonalt.elims(3))



lemma good0:
  assumes "rs \<noteq> Nil" "\<forall>r \<in> set rs. nonalt r" "distinct rs"
  shows "good (rsimp_ALTs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. good r)"
  using  assms
  apply(induct  rs rule: rsimp_ALTs.induct)
  apply(auto)
  done

lemma flts1:
  assumes "good r" 
  shows "rflts [r] \<noteq> []"
  using  assms
  apply(induct r)
       apply(simp_all)
  using good.simps(4) by blast

lemma flts2:
  assumes "good r" 
  shows "\<forall>r' \<in> set (rflts [r]). good r' \<and> nonalt r'"
  using  assms
  apply(induct r)
       apply(simp)
      apply(simp)
     apply(simp)
    prefer 2
    apply(simp)
    apply(auto)[1]
  
     apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv)
    apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv)
   apply fastforce
  apply(simp)
  done  



lemma flts3:
  assumes "\<forall>r \<in> set rs. good r \<or> r = RZERO" 
  shows "\<forall>r \<in> set (rflts rs). good r"
  using  assms
  apply(induct rs rule: rflts.induct)
        apply(simp_all)
  by (metis UnE flts2 k0a)


lemma  k0:
  shows "rflts (r # rs1) = rflts [r] @ rflts rs1"
  apply(induct r arbitrary: rs1)
   apply(auto)
  done


lemma good_SEQ:
  assumes "r1 \<noteq> RZERO" "r2 \<noteq> RZERO" " r1 \<noteq> RONE"
  shows "good (RSEQ r1 r2) = (good r1 \<and> good r2)"
  using assms
  apply(case_tac r1)
       apply(simp_all)
  apply(case_tac r2)
          apply(simp_all)
  apply(case_tac r2)
         apply(simp_all)
  apply(case_tac r2)
        apply(simp_all)
  apply(case_tac r2)
       apply(simp_all)
  done

lemma rsize0:
  shows "0 < rsize r"
  apply(induct  r)
       apply(auto)
  done











lemma nn1qq:
  assumes "nonnested (RALTS rs)"
  shows "\<nexists> rs1. RALTS rs1 \<in> set rs"
  using assms
  apply(induct rs rule: rflts.induct)
  apply(auto)
  done

 

lemma n0:
  shows "nonnested (RALTS rs) \<longleftrightarrow> (\<forall>r \<in> set rs. nonalt r)"
  apply(induct rs )
   apply(auto)
    apply (metis list.set_intros(1) nn1qq nonalt.elims(3))
  apply (metis nonalt.elims(2) nonnested.simps(3) nonnested.simps(4) nonnested.simps(5) nonnested.simps(6) nonnested.simps(7))
  using bbbbs1 apply fastforce
  by (metis bbbbs1 list.set_intros(2) nn1qq)

  
  

lemma nn1c:
  assumes "\<forall>r \<in> set rs. nonnested r"
  shows "\<forall>r \<in> set (rflts rs). nonalt r"
  using assms
  apply(induct rs rule: rflts.induct)
        apply(auto)
  using n0 by blast

lemma nn1bb:
  assumes "\<forall>r \<in> set rs. nonalt r"
  shows "nonnested (rsimp_ALTs  rs)"
  using assms
  apply(induct  rs rule: rsimp_ALTs.induct)
    apply(auto)
  using nonalt.simps(1) nonnested.elims(3) apply blast
  using n0 by auto

lemma bsimp_ASEQ0:
  shows "rsimp_SEQ  r1 RZERO = RZERO"
  apply(induct r1)
  apply(auto)
  done

lemma nn1b:
  shows "nonnested (rsimp r)"
  apply(induct r)
       apply(simp_all)
  apply(case_tac "rsimp r1 = RZERO")
    apply(simp)
 apply(case_tac "rsimp r2 = RZERO")
   apply(simp)
    apply(subst bsimp_ASEQ0)
  apply(simp)
  apply(case_tac "\<exists>bs. rsimp r1 = RONE")
    apply(auto)[1]
  using idiot apply fastforce
  using idiot2 nonnested.simps(11) apply presburger
  by (metis (mono_tags, lifting) Diff_empty image_iff list.set_map nn1bb nn1c rdistinct_set_equality1)

lemma nonalt_flts_rd:
  shows "\<lbrakk>xa \<in> set (rdistinct (rflts (map rsimp rs)) {})\<rbrakk>
       \<Longrightarrow> nonalt xa"
  by (metis Diff_empty ex_map_conv nn1b nn1c rdistinct_set_equality1)




lemma bsimp_ASEQ2:
  shows "rsimp_SEQ RONE r2 =  r2"
  apply(induct r2)
  apply(auto)
  done

lemma elem_smaller_than_set:
  shows "xa \<in> set  list \<Longrightarrow> rsize xa < Suc (rsizes list)"
  apply(induct list)
   apply simp
  by (metis image_eqI le_imp_less_Suc list.set_map member_le_sum_list)

lemma rsimp_list_mono:
  shows "rsizes (map rsimp rs) \<le> rsizes rs"
  apply(induct rs)
   apply simp+
  by (simp add: add_mono_thms_linordered_semiring(1) rsimp_mono)


(*says anything coming out of simp+flts+db will be good*)
lemma good2_obv_simplified:
  shows " \<lbrakk>\<forall>y. rsize y < Suc (rsizes rs) \<longrightarrow> good (rsimp y) \<or> rsimp y = RZERO;
           xa \<in> set (rdistinct (rflts (map rsimp rs)) {})\<rbrakk> \<Longrightarrow> good xa"
  apply(subgoal_tac " \<forall>xa' \<in> set (map rsimp rs). good xa' \<or> xa' = RZERO")
  prefer 2
   apply (simp add: elem_smaller_than_set)
  by (metis Diff_empty flts3 rdistinct_set_equality1)




lemma good1:
  shows "good (rsimp a) \<or> rsimp a = RZERO"
  apply(induct a taking: rsize rule: measure_induct)
  apply(case_tac x)
  apply(simp)
  apply(simp)
  apply(simp)
  prefer 3
    apply(simp)
   prefer 2
   apply(simp only:)
   apply simp
  apply (smt (verit, ccfv_threshold) add_mono_thms_linordered_semiring(1) elem_smaller_than_set good0 good2_obv_simplified le_eq_less_or_eq nonalt_flts_rd order_less_trans plus_1_eq_Suc rdistinct_does_the_job rdistinct_smaller rflts_mono rsimp_ALTs.simps(1) rsimp_list_mono)
  apply simp
  apply(subgoal_tac "good (rsimp x41) \<or> rsimp x41 = RZERO")
   apply(subgoal_tac "good (rsimp x42) \<or> rsimp x42 = RZERO")
    apply(case_tac "rsimp x41 = RZERO")
     apply simp
    apply(case_tac "rsimp x42 = RZERO")
     apply simp
  using bsimp_ASEQ0 apply blast
    apply(subgoal_tac "good (rsimp x41)")
     apply(subgoal_tac "good (rsimp x42)")
      apply simp
  apply (metis bsimp_ASEQ2 good_SEQ idiot2)
  apply blast
  apply fastforce
  using less_add_Suc2 apply blast  
  using less_iff_Suc_add by blast

lemma RL_rnullable:
  shows "rnullable r = ([] \<in> RL r)"
  apply(induct r)
  apply(auto simp add: Sequ_def)
  done

lemma RL_rder:
  shows "RL (rder c r) = Der c (RL r)"
  apply(induct r)
  apply(auto simp add: Sequ_def Der_def)
        apply (metis append_Cons)
  using RL_rnullable apply blast
  apply (metis append_eq_Cons_conv)
  apply (metis append_Cons)
  apply (metis RL_rnullable append_eq_Cons_conv)
  apply (metis Star.step append_Cons)
  using Star_decomp by auto




lemma RL_rsimp_RSEQ:
  shows "RL (rsimp_SEQ r1 r2) = (RL r1 ;; RL r2)"
  apply(induct r1 r2 rule: rsimp_SEQ.induct)
  apply(simp_all)
  done



lemma RL_rsimp_RALTS:
  shows "RL (rsimp_ALTs rs) = (\<Union> (set (map RL rs)))"
  apply(induct rs rule: rsimp_ALTs.induct)
  apply(simp_all)
  done

lemma RL_rsimp_rdistinct:
  shows "(\<Union> (set (map RL (rdistinct rs {})))) = (\<Union> (set (map RL rs)))"
  apply(auto)
  apply (metis Diff_iff rdistinct_set_equality1)
  by (metis Diff_empty rdistinct_set_equality1)

lemma RL_rsimp_rflts:
  shows "(\<Union> (set (map RL (rflts rs)))) = (\<Union> (set (map RL rs)))"
  apply(induct rs rule: rflts.induct)
  apply(simp_all)
  done

lemma RL_rsimp:
  shows "RL r = RL (rsimp r)"
  apply(induct r rule: rsimp.induct)
       apply(auto simp add: Sequ_def RL_rsimp_RSEQ)
  using RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts apply auto[1]
  by (smt (verit, del_insts) RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts UN_E image_iff list.set_map)



lemma der_simp_nullability:
  shows "rnullable r = rnullable (rsimp r)"
  using RL_rnullable RL_rsimp by auto
  

lemma qqq1:
  shows "RZERO \<notin> set (rflts (map rsimp rs))"
  by (metis ex_map_conv flts3 good.simps(1) good1)





lemma flts_single1:
  assumes "nonalt r" "nonazero r"
  shows "rflts [r] = [r]"
  using assms
  apply(induct r)
  apply(auto)
  done

lemma nonalt0_flts_keeps:
  shows "(a \<noteq> RZERO) \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow> rflts (a # xs) = a # rflts xs"
  apply(case_tac a)
       apply simp+
  done


lemma nonalt0_fltseq:
  shows "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r \<Longrightarrow> rflts rs = rs"
  apply(induct rs)
   apply simp
  apply(case_tac "a = RZERO")
   apply fastforce
  apply(case_tac "\<exists>rs1. a = RALTS rs1")
   apply(erule exE)
   apply simp+
  using nonalt0_flts_keeps by presburger

  


lemma goodalts_nonalt:
  shows "good (RALTS rs) \<Longrightarrow> rflts rs = rs"
  apply(induct x == "RALTS rs" arbitrary: rs rule: good.induct)
    apply simp
  
  using good.simps(5) apply blast
  apply simp
  apply(case_tac "r1 = RZERO")
  using good.simps(1) apply force
  apply(case_tac "r2 = RZERO")
  using good.simps(1) apply force
  apply(subgoal_tac "rflts (r1 # r2 # rs) = r1 # r2 # rflts rs")
  prefer 2
   apply (metis nonalt.simps(1) rflts_def_idiot)
  apply(subgoal_tac "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r")
   apply(subgoal_tac "rflts rs = rs")
    apply presburger
  using nonalt0_fltseq apply presburger
  using good.simps(1) by blast
  

  


lemma test:
  assumes "good r"
  shows "rsimp r = r"

  using assms
  apply(induct rule: good.induct)
                      apply simp
                      apply simp
                      apply simp
                      apply simp
                      apply simp
                      apply(subgoal_tac "distinct (r1 # r2 # rs)")
  prefer 2
  using good.simps(6) apply blast
  apply(subgoal_tac "rflts (r1 # r2 # rs ) = r1 # r2 # rs")
  prefer 2
  using goodalts_nonalt apply blast

                      apply(subgoal_tac "r1 \<noteq> r2")
  prefer 2
                      apply (meson distinct_length_2_or_more)
                      apply(subgoal_tac "r1 \<notin> set rs")
                      apply(subgoal_tac "r2 \<notin> set rs")
                      apply(subgoal_tac "\<forall>r \<in> set rs. rsimp r = r")
                      apply(subgoal_tac "map rsimp rs = rs")
  apply simp             
                      apply(subgoal_tac "\<forall>r \<in>  {r1, r2}. r \<notin> set rs")
  apply (metis distinct_not_exist rdistinct_on_distinct)
  
                      apply blast
                      apply (meson map_idI)
                      apply (metis good.simps(6) insert_iff list.simps(15))

  apply (meson distinct.simps(2))
                      apply (simp add: distinct_length_2_or_more)
                      apply simp+
  done



lemma rsimp_idem:
  shows "rsimp (rsimp r) = rsimp r"
  using test good1
  by force

corollary rsimp_inner_idem4:
  shows "rsimp r = RALTS rs \<Longrightarrow> rflts rs = rs"
  by (metis good1 goodalts_nonalt rrexp.simps(12))


corollary head_one_more_simp:
  shows "map rsimp (r # rs) = map rsimp (( rsimp r) # rs)"
  by (simp add: rsimp_idem)




lemma basic_regex_property1:
  shows "rnullable r \<Longrightarrow> rsimp r \<noteq> RZERO"
  apply(induct r rule: rsimp.induct)
  apply(auto)
  apply (metis idiot idiot2 rrexp.distinct(5))
  by (metis der_simp_nullability rnullable.simps(1) rnullable.simps(4) rsimp.simps(2))



lemma no_alt_short_list_after_simp:
  shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
  by (metis bbbbs good1 k0a rrexp.simps(12))


lemma no_further_dB_after_simp:
  shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs"
  apply(subgoal_tac "good (RALTS rs)")
  apply(subgoal_tac "distinct rs")
  using rdistinct_on_distinct apply blast
  apply (metis distinct.simps(1) distinct.simps(2) empty_iff good.simps(6) list.exhaust set_empty2)
  using good1 by fastforce


lemma idem_after_simp1:
  shows "rsimp_ALTs (rdistinct (rflts [rsimp aa]) {}) = rsimp aa"
  apply(case_tac "rsimp aa")
  apply simp+
  apply (metis no_alt_short_list_after_simp no_further_dB_after_simp)
  by simp





(*equalities with rsimp *)
lemma identity_wwo0:
  shows "rsimp (rsimp_ALTs (RZERO # rs)) = rsimp (rsimp_ALTs rs)"
  by (metis idem_after_simp1 list.exhaust list.simps(8) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))







(*some basic facts about rsimp*)

unused_thms


end