thys/BitCoded2.thy
author Chengsong
Mon, 22 Aug 2022 17:58:29 +0100
changeset 582 3e19073e91f4
parent 362 e51c9a67a68d
permissions -rw-r--r--
chap3 done


theory BitCoded2
  imports "Lexer" 
begin

section \<open>Bit-Encodings\<close>

datatype bit = Z | S

fun 
  code :: "val \<Rightarrow> bit list"
where
  "code Void = []"
| "code (Char c) = []"
| "code (Left v) = Z # (code v)"
| "code (Right v) = S # (code v)"
| "code (Seq v1 v2) = (code v1) @ (code v2)"
| "code (Stars []) = [S]"
| "code (Stars (v # vs)) =  (Z # code v) @ code (Stars vs)"


fun 
  Stars_add :: "val \<Rightarrow> val \<Rightarrow> val"
where
  "Stars_add v (Stars vs) = Stars (v # vs)"
| "Stars_add v _ = Stars [v]" 

function
  decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)"
where
  "decode' ds ZERO = (Void, [])"
| "decode' ds ONE = (Void, ds)"
| "decode' ds (CHAR d) = (Char d, ds)"
| "decode' [] (ALT r1 r2) = (Void, [])"
| "decode' (Z # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))"
| "decode' (S # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))"
| "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in
                             let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))"
| "decode' [] (STAR r) = (Void, [])"
| "decode' (S # ds) (STAR r) = (Stars [], ds)"
| "decode' (Z # ds) (STAR r) = (let (v, ds') = decode' ds r in
                                    let (vs, ds'') = decode' ds' (STAR r) 
                                    in (Stars_add v vs, ds''))"
by pat_completeness auto

lemma decode'_smaller:
  assumes "decode'_dom (ds, r)"
  shows "length (snd (decode' ds r)) \<le> length ds"
using assms
apply(induct ds r)
apply(auto simp add: decode'.psimps split: prod.split)
using dual_order.trans apply blast
by (meson dual_order.trans le_SucI)

termination "decode'"  
apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))") 
apply(auto dest!: decode'_smaller)
by (metis less_Suc_eq_le snd_conv)

definition
  decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option"
where
  "decode ds r \<equiv> (let (v, ds') = decode' ds r 
                  in (if ds' = [] then Some v else None))"

lemma decode'_code_Stars:
  assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []" 
  shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)"
  using assms
  apply(induct vs)
  apply(auto)
  done

lemma decode'_code:
  assumes "\<Turnstile> v : r"
  shows "decode' ((code v) @ ds) r = (v, ds)"
using assms
  apply(induct v r arbitrary: ds) 
  apply(auto)
  using decode'_code_Stars by blast

lemma decode_code:
  assumes "\<Turnstile> v : r"
  shows "decode (code v) r = Some v"
  using assms unfolding decode_def
  by (smt append_Nil2 decode'_code old.prod.case)


section {* Annotated Regular Expressions *}

datatype arexp = 
  AZERO
| AONE "bit list"
| ACHAR "bit list" char
| ASEQ "bit list" arexp arexp
| AALTs "bit list" "arexp list"
| ASTAR "bit list" arexp

abbreviation
  "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]"

fun asize :: "arexp \<Rightarrow> nat" where
  "asize AZERO = 1"
| "asize (AONE cs) = 1" 
| "asize (ACHAR cs c) = 1"
| "asize (AALTs cs rs) = Suc (sum_list (map asize rs))"
| "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)"
| "asize (ASTAR cs r) = Suc (asize r)"

fun 
  erase :: "arexp \<Rightarrow> rexp"
where
  "erase AZERO = ZERO"
| "erase (AONE _) = ONE"
| "erase (ACHAR _ c) = CHAR c"
| "erase (AALTs _ []) = ZERO"
| "erase (AALTs _ [r]) = (erase r)"
| "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))"
| "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)"
| "erase (ASTAR _ r) = STAR (erase r)"

lemma decode_code_erase:
  assumes "\<Turnstile> v : (erase  a)"
  shows "decode (code v) (erase a) = Some v"
  using assms
  by (simp add: decode_code) 


fun nonalt :: "arexp \<Rightarrow> bool"
  where
  "nonalt (AALTs bs2 rs) = False"
| "nonalt r = True"


fun good :: "arexp \<Rightarrow> bool" where
  "good AZERO = False"
| "good (AONE cs) = True" 
| "good (ACHAR cs c) = True"
| "good (AALTs cs []) = False"
| "good (AALTs cs [r]) = False"
| "good (AALTs cs (r1#r2#rs)) = (\<forall>r' \<in> set (r1#r2#rs). good r' \<and> nonalt r')"
| "good (ASEQ _ AZERO _) = False"
| "good (ASEQ _ (AONE _) _) = False"
| "good (ASEQ _ _ AZERO) = False"
| "good (ASEQ cs r1 r2) = (good r1 \<and> good r2)"
| "good (ASTAR cs r) = True"




fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where
  "fuse bs AZERO = AZERO"
| "fuse bs (AONE cs) = AONE (bs @ cs)" 
| "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c"
| "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs"
| "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2"
| "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r"

lemma fuse_append:
  shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)"
  apply(induct r)
  apply(auto)
  done


fun intern :: "rexp \<Rightarrow> arexp" where
  "intern ZERO = AZERO"
| "intern ONE = AONE []"
| "intern (CHAR c) = ACHAR [] c"
| "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1)) 
                                (fuse [S]  (intern r2))"
| "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)"
| "intern (STAR r) = ASTAR [S] (intern r)"




fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where
  "retrieve (AONE bs) Void = bs"
| "retrieve (ACHAR bs c) (Char d) = bs"
| "retrieve (AALTs bs [r]) v = bs @ retrieve r v" 
| "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
| "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2"
| "retrieve (ASTAR bs r) (Stars []) = bs @ [S]"
| "retrieve (ASTAR bs r) (Stars (v#vs)) = 
     bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)"



fun
 bnullable :: "arexp \<Rightarrow> bool"
where
  "bnullable (AZERO) = False"
| "bnullable (AONE bs) = True"
| "bnullable (ACHAR bs c) = False"
| "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)"
| "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)"
| "bnullable (ASTAR bs r) = True"

fun 
  bmkeps :: "arexp \<Rightarrow> bit list"
where
  "bmkeps(AONE bs) = bs"
| "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)"
| "bmkeps(AALTs bs [r]) = bs @ (bmkeps r)"
| "bmkeps(AALTs bs (r#rs)) = (if bnullable(r) then bs @ (bmkeps r) else (bmkeps (AALTs bs rs)))"
| "bmkeps(ASTAR bs r) = bs"


fun
 bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp"
where
  "bder c (AZERO) = AZERO"
| "bder c (AONE bs) = AZERO"
| "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)"
| "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)"
| "bder c (ASEQ bs r1 r2) = 
     (if bnullable r1
      then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2))
      else ASEQ bs (bder c r1) r2)"
| "bder c (ASTAR bs r) = ASEQ (butlast bs) (fuse [Z] (bder c r)) (ASTAR [S] r)"



lemma bder_fuse:
  "fuse bs (bder c r) = bder c (fuse bs r)"
  apply(induct r arbitrary: bs)
  apply(simp_all)
  done


fun 
  bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
where
  "bders r [] = r"
| "bders r (c#s) = bders (bder c r) s"

lemma bders_append:
  "bders r (s1 @ s2) = bders (bders r s1) s2"
  apply(induct s1 arbitrary: r s2)
  apply(simp_all)
  done

lemma bnullable_correctness:
  shows "nullable (erase r) = bnullable r"
  apply(induct r rule: erase.induct)
  apply(simp_all)
  done

lemma erase_fuse:
  shows "erase (fuse bs r) = erase r"
  apply(induct r rule: erase.induct)
  apply(simp_all)
  done

lemma erase_intern [simp]:
  shows "erase (intern r) = r"
  apply(induct r)
  apply(simp_all add: erase_fuse)
  done

lemma erase_bder [simp]:
  shows "erase (bder a r) = der a (erase r)"
  apply(induct r rule: erase.induct)
  apply(simp_all add: erase_fuse bnullable_correctness)
  done

lemma erase_bders [simp]:
  shows "erase (bders r s) = ders s (erase r)"
  apply(induct s arbitrary: r )
  apply(simp_all)
  done

lemma retrieve_encode_STARS:
  assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v"
  shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)"
  using assms
  apply(induct vs)
  apply(simp_all)
  done

lemma retrieve_fuse2:
  assumes "\<Turnstile> v : (erase r)"
  shows "retrieve (fuse bs r) v = bs @ retrieve r v"
  using assms
  apply(induct r arbitrary: v bs)
         apply(auto elim: Prf_elims)[4]
   defer
  using retrieve_encode_STARS
   apply(auto elim!: Prf_elims)[1]
   apply(case_tac vs)
    apply(simp)
   apply(simp)
  (* AALTs  case *)
  apply(simp)
  apply(case_tac x2a)
   apply(simp)
   apply(auto elim!: Prf_elims)[1]
  apply(simp)
   apply(case_tac list)
   apply(simp)
  apply(auto)
  apply(auto elim!: Prf_elims)[1]
  done

lemma retrieve_fuse:
  assumes "\<Turnstile> v : r"
  shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v"
  using assms 
  by (simp_all add: retrieve_fuse2)


lemma r:
  assumes "bnullable (AALTs bs (a # rs))"
  shows "bnullable a \<or> (\<not> bnullable a \<and> bnullable (AALTs bs rs))"
  using assms
  apply(induct rs)
   apply(auto)
  done

lemma r0:
  assumes "bnullable a" 
  shows  "bmkeps (AALTs bs (a # rs)) = bs @ (bmkeps a)"
  using assms
  by (metis bmkeps.simps(3) bmkeps.simps(4) list.exhaust)

lemma r1:
  assumes "\<not> bnullable a" "bnullable (AALTs bs rs)"
  shows  "bmkeps (AALTs bs (a # rs)) = bmkeps (AALTs bs rs)"
  using assms
  apply(induct rs)
   apply(auto)
  done

lemma r2:
  assumes "x \<in> set rs" "bnullable x"
  shows "bnullable (AALTs bs rs)"
  using assms
  apply(induct rs)
   apply(auto)
  done

lemma  r3:
  assumes "\<not> bnullable r" 
          " \<exists> x \<in> set rs. bnullable x"
  shows "retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs))) =
         retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))"
  using assms
  apply(induct rs arbitrary: r bs)
   apply(auto)[1]
  apply(auto)
  using bnullable_correctness apply blast
    apply(auto simp add: bnullable_correctness mkeps_nullable retrieve_fuse2)
   apply(subst retrieve_fuse2[symmetric])
  apply (smt bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable)
   apply(simp)
  apply(case_tac "bnullable a")
  apply (smt append_Nil2 bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) fuse.simps(4) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable retrieve_fuse2)
  apply(drule_tac x="a" in meta_spec)
  apply(drule_tac x="bs" in meta_spec)
  apply(drule meta_mp)
   apply(simp)
  apply(drule meta_mp)
   apply(auto)
  apply(subst retrieve_fuse2[symmetric])
  apply(case_tac rs)
    apply(simp)
   apply(auto)[1]
      apply (simp add: bnullable_correctness)
  apply (metis append_Nil2 bnullable_correctness erase_fuse fuse.simps(4) list.set_intros(1) mkeps.simps(3) mkeps_nullable nullable.simps(4) r2)
    apply (simp add: bnullable_correctness)
  apply (metis append_Nil2 bnullable_correctness erase.simps(6) erase_fuse fuse.simps(4) list.set_intros(2) mkeps.simps(3) mkeps_nullable r2)
  apply(simp)
  done


lemma t: 
  assumes "\<forall>r \<in> set rs. nullable (erase r) \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))" 
          "nullable (erase (AALTs bs rs))"
  shows " bmkeps (AALTs bs rs) = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
  using assms
  apply(induct rs arbitrary: bs)
   apply(simp)
  apply(auto simp add: bnullable_correctness)
   apply(case_tac rs)
     apply(auto simp add: bnullable_correctness)[2]
   apply(subst r1)
     apply(simp)
    apply(rule r2)
     apply(assumption)
    apply(simp)
   apply(drule_tac x="bs" in meta_spec)
   apply(drule meta_mp)
    apply(auto)[1]
   prefer 2
  apply(case_tac "bnullable a")
    apply(subst r0)
     apply blast
    apply(subgoal_tac "nullable (erase a)")
  prefer 2
  using bnullable_correctness apply blast
  apply (metis (no_types, lifting) erase.simps(5) erase.simps(6) list.exhaust mkeps.simps(3) retrieve.simps(3) retrieve.simps(4))
  apply(subst r1)
     apply(simp)
  using r2 apply blast
  apply(drule_tac x="bs" in meta_spec)
   apply(drule meta_mp)
    apply(auto)[1]
   apply(simp)
  using r3 apply blast
  apply(auto)
  using r3 by blast


lemma asize0:
  shows "0 < asize r"
  apply(induct  r)
  apply(auto)
  done

lemma asize_fuse:
  shows "asize (fuse bs r) = asize r"
  apply(induct r)
  apply(auto)
  done

lemma TESTTEST:
  shows "bder c (intern r) = intern (der c r)"
  apply(induct r)
       apply(simp)
      apply(simp)
     apply(simp)
    prefer 2
    apply(simp)  
    apply (simp add: bder_fuse[symmetric])
  prefer 3
   apply(simp only: intern.simps)
   apply(simp only: der.simps)
   apply(simp only: intern.simps)
    apply(simp only: bder.simps)
  apply(simp)
   apply(simp only: intern.simps)
   prefer 2
   apply(simp)
   prefer 2
   apply(simp)
  apply(auto)


fun nonnested :: "arexp \<Rightarrow> bool"
  where
  "nonnested (AALTs bs2 []) = True"
| "nonnested (AALTs bs2 ((AALTs bs1 rs1) # rs2)) = False"
| "nonnested (AALTs bs2 (r # rs2)) = nonnested (AALTs bs2 rs2)"
| "nonnested r = True"



fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list"
  where
  "distinctBy [] f acc = []"
| "distinctBy (x#xs) f acc = 
     (if (f x) \<in> acc then distinctBy xs f acc 
      else x # (distinctBy xs f ({f x} \<union> acc)))"

fun flts :: "arexp list \<Rightarrow> arexp list"
  where 
  "flts [] = []"
| "flts (AZERO # rs) = flts rs"
| "flts ((AALTs bs  rs1) # rs) = (map (fuse bs) rs1) @ flts rs"
| "flts (r1 # rs) = r1 # flts rs"


fun spill :: "arexp list \<Rightarrow> arexp list"
  where 
  "spill [] = []"
| "spill ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ spill rs"
| "spill (r1 # rs) = r1 # spill rs"

lemma  spill_Cons:
  shows "spill (r # rs1) = spill [r] @ spill rs1"
  apply(induct r arbitrary: rs1)
   apply(auto)
  done

lemma  spill_append:
  shows "spill (rs1 @ rs2) = spill rs1 @ spill rs2"
  apply(induct rs1 arbitrary: rs2)
   apply(auto)
  by (metis append.assoc spill_Cons)

fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp"
  where
  "bsimp_ASEQ _ AZERO _ = AZERO"
| "bsimp_ASEQ _ _ AZERO = AZERO"
| "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2"
| "bsimp_ASEQ bs1 r1 r2 = ASEQ  bs1 r1 r2"


fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp"
  where
  "bsimp_AALTs _ [] = AZERO"
| "bsimp_AALTs bs1 [r] = fuse bs1 r"
| "bsimp_AALTs bs1 rs = AALTs bs1 rs"


fun bsimp :: "arexp \<Rightarrow> arexp" 
  where
  "bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)"
| "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (flts (map bsimp rs))"
| "bsimp r = r"


inductive contains2 :: "arexp \<Rightarrow> bit list \<Rightarrow> bool" ("_ >>2 _" [51, 50] 50)
  where
  "AONE bs >>2 bs"
| "ACHAR bs c >>2 bs"
| "\<lbrakk>a1 >>2 bs1; a2 >>2 bs2\<rbrakk> \<Longrightarrow> ASEQ bs a1 a2 >>2 bs @ bs1 @ bs2"
| "r >>2 bs1 \<Longrightarrow> AALTs bs (r#rs) >>2 bs @ bs1"
| "AALTs bs rs >>2 bs @ bs1 \<Longrightarrow> AALTs bs (r#rs) >>2 bs @ bs1"
| "ASTAR bs r >>2 bs @ [S]"
| "\<lbrakk>r >>2 bs1; ASTAR [] r >>2 bs2\<rbrakk> \<Longrightarrow> ASTAR bs r >>2 bs @ Z # bs1 @ bs2"
| "r >>2 bs \<Longrightarrow> (bsimp r) >>2 bs"


inductive contains :: "arexp \<Rightarrow> bit list \<Rightarrow> bool" ("_ >> _" [51, 50] 50)
  where
  "AONE bs >> bs"
| "ACHAR bs c >> bs"
| "\<lbrakk>a1 >> bs1; a2 >> bs2\<rbrakk> \<Longrightarrow> ASEQ bs a1 a2 >> bs @ bs1 @ bs2"
| "r >> bs1 \<Longrightarrow> AALTs bs (r#rs) >> bs @ bs1"
| "AALTs bs rs >> bs @ bs1 \<Longrightarrow> AALTs bs (r#rs) >> bs @ bs1"
| "ASTAR bs r >> bs @ [S]"
| "\<lbrakk>r >> bs1; ASTAR [] r >> bs2\<rbrakk> \<Longrightarrow> ASTAR bs r >> bs @ Z # bs1 @ bs2"



lemma contains0:
  assumes "a >> bs"
  shows "(fuse bs1 a) >> bs1 @ bs"
  using assms
  apply(induct arbitrary: bs1)
  apply(auto intro: contains.intros)
       apply (metis append.assoc contains.intros(3))
     apply (metis append.assoc contains.intros(4))
  apply (metis append.assoc contains.intros(5))
    apply (metis append.assoc contains.intros(6))
   apply (metis append_assoc contains.intros(7))
  done

lemma contains1:
  assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> intern r >> code v"
  shows "ASTAR [] (intern r) >> code (Stars vs)"
  using assms
  apply(induct vs)
   apply(simp)
  using contains.simps apply blast
  apply(simp)
   apply(subst (2) append_Nil[symmetric])
  apply(rule contains.intros)
   apply(auto)
  done





lemma contains2:
  assumes "\<Turnstile> v : r"
  shows "(intern r) >> code v"
  using assms
  apply(induct)
       prefer 4
       apply(simp)
       apply(rule contains.intros)
   prefer 4
       apply(simp)
      apply(rule contains.intros)
     apply(simp)
  apply(subst (3) append_Nil[symmetric])
  apply(rule contains.intros)
      apply(simp)
  apply(simp)
    apply(simp)
  apply(subst (9) append_Nil[symmetric])
    apply(rule contains.intros)
    apply (metis append_Cons append_self_conv2 contains0)
    apply(simp)
     apply(subst (9) append_Nil[symmetric])
   apply(rule contains.intros)
   back
   apply(rule contains.intros)
  apply(drule_tac ?bs1.0="[S]" in contains0)
   apply(simp)
  apply(simp)
  apply(case_tac vs)
   apply(simp)
  apply (metis append_Nil contains.intros(6))
  using contains1 by blast

lemma qq1:
  assumes "\<exists>r \<in> set rs. bnullable r"
  shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs)"
  using assms
  apply(induct rs arbitrary: rs1 bs)
  apply(simp)
  apply(simp)
  by (metis Nil_is_append_conv bmkeps.simps(4) neq_Nil_conv r0 split_list_last)

lemma qq2:
  assumes "\<forall>r \<in> set rs. \<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r"
  shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs1)"
  using assms
  apply(induct rs arbitrary: rs1 bs)
  apply(simp)
  apply(simp)
  by (metis append_assoc in_set_conv_decomp r1 r2)

lemma qq2a:
  assumes "\<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r"
  shows "bmkeps (AALTs bs (r # rs1)) = bmkeps (AALTs bs rs1)"
  using assms
  by (simp add: r1)
  
lemma qq3:
  shows "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)"
  apply(induct rs arbitrary: bs)
  apply(simp)
  apply(simp)
  done

lemma qq4:
  assumes "bnullable (AALTs bs rs)"
  shows "bmkeps (AALTs bs rs) = bs @ bmkeps (AALTs [] rs)"
  by (metis append_Nil2 assms bmkeps_retrieve bnullable_correctness erase_fuse fuse.simps(4) mkeps_nullable retrieve_fuse2)


lemma contains3a:
  assumes "AALTs bs lst >> bs @ bs1"
  shows "AALTs bs (a # lst) >> bs @ bs1"
  using assms
  apply -
  by (simp add: contains.intros(5))

  
lemma contains3b:
  assumes "a >> bs1"
  shows "AALTs bs (a # lst) >> bs @ bs1"
  using assms
  apply -
  apply(rule contains.intros)
  apply(simp)
  done   


lemma contains3:
  assumes "\<And>x. \<lbrakk>x \<in> set rs; bnullable x\<rbrakk> \<Longrightarrow> x >> bmkeps x" "x \<in> set rs" "bnullable x"
  shows "AALTs bs rs >> bmkeps (AALTs bs rs)"
  using assms
  apply(induct rs arbitrary: bs x)
   apply simp
  by (metis contains.intros(4) contains.intros(5) list.set_intros(1) list.set_intros(2) qq3 qq4 r r0 r1)

lemma cont1:
  assumes "\<And>v. \<Turnstile> v : erase r \<Longrightarrow> r >> retrieve r v" 
          "\<forall>v\<in>set vs. \<Turnstile> v : erase r \<and> flat v \<noteq> []" 
  shows "ASTAR bs r >> retrieve (ASTAR bs r) (Stars vs)"
  using assms 
  apply(induct vs arbitrary: bs r)
   apply(simp)
  using contains.intros(6) apply auto[1]
  by (simp add: contains.intros(7))
  
lemma contains4:
  assumes "bnullable a"
  shows "a >> bmkeps a"
  using assms
  apply(induct a rule: bnullable.induct)
       apply(auto intro: contains.intros)
  using contains3 by blast

lemma contains5:
  assumes "\<Turnstile> v : r"
  shows "(intern r) >> retrieve (intern r) v"
  using contains2[OF assms] retrieve_code[OF assms]
  by (simp)


lemma contains6:
  assumes "\<Turnstile> v : (erase r)"
  shows "r >> retrieve r v"
  using assms
  apply(induct r arbitrary: v rule: erase.induct)
  apply(auto)[1]
  using Prf_elims(1) apply blast
  using Prf_elims(4) contains.intros(1) apply force
  using Prf_elims(5) contains.intros(2) apply force
  apply(auto)[1]
  using Prf_elims(1) apply blast
  apply(auto)[1]
  using contains3b contains3a apply blast
    prefer 2
  apply(auto)[1]
    apply (metis Prf_elims(2) contains.intros(3) retrieve.simps(6))
   prefer 2
  apply(auto)[1]
   apply (metis Prf_elims(6) cont1)
  apply(simp)
  apply(erule Prf_elims)
   apply(auto)
   apply (simp add: contains3b)
  using retrieve_fuse2 contains3b contains3a
  apply(subst retrieve_fuse2[symmetric])
  apply (metis append_Nil2 erase_fuse fuse.simps(4))
  apply(simp)
  by (metis append_Nil2 erase_fuse fuse.simps(4))

lemma contains7:
  assumes "\<Turnstile> v : der c (erase r)"
  shows "(bder c r) >> retrieve r (injval (erase r) c v)"
  using bder_retrieve[OF assms(1)] retrieve_code[OF assms(1)]
  by (metis assms contains6 erase_bder)


lemma contains7a:
  assumes "\<Turnstile> v : der c (erase r)"
  shows "r >> retrieve r (injval (erase r) c v)"
  using assms
  apply -
  apply(drule Prf_injval)
  apply(drule contains6)
  apply(simp)
  done

lemma contains7b:
  assumes "\<Turnstile> v : ders s (erase r)"
  shows "(bders r s) >> retrieve r (flex (erase r) id s v)"
  using assms
  apply(induct s arbitrary: r v)
   apply(simp)
   apply (simp add: contains6)
  apply(simp add: bders_append flex_append ders_append)
  apply(drule_tac x="bder a r" in meta_spec)
  apply(drule meta_spec)
  apply(drule meta_mp)
   apply(simp)
  apply(simp)
  apply(subst (asm) bder_retrieve)
   defer
  apply (simp add: flex_injval)
  by (simp add: Prf_flex)

lemma contains7_iff:
  assumes "\<Turnstile> v : der c (erase r)"
  shows "(bder c r) >> retrieve r (injval (erase r) c v) \<longleftrightarrow>
                  r >> retrieve r (injval (erase r) c v)"
  by (simp add: assms contains7 contains7a)

lemma contains8_iff:
  assumes "\<Turnstile> v : ders s (erase r)"
  shows "(bders r s) >> retrieve r (flex (erase r) id s v) \<longleftrightarrow>
                  r >> retrieve r (flex (erase r) id s v)"
  using Prf_flex assms contains6 contains7b by blast




fun 
  bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
where
  "bders_simp r [] = r"
| "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s"

definition blexer_simp where
 "blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then 
                decode (bmkeps (bders_simp (intern r) s)) r else None"





lemma bders_simp_append:
  shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2"
  apply(induct s1 arbitrary: r s2)
   apply(simp)
  apply(simp)
  done

lemma bsimp_ASEQ_size:
  shows "asize (bsimp_ASEQ bs r1 r2) \<le> Suc (asize r1 + asize r2)"
  apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
  apply(auto)
  done



lemma flts_size:
  shows "sum_list (map asize (flts rs)) \<le> sum_list (map asize rs)"
  apply(induct rs rule: flts.induct)
        apply(simp_all)
  by (simp add: asize_fuse comp_def)
  

lemma bsimp_AALTs_size:
  shows "asize (bsimp_AALTs bs rs) \<le> Suc (sum_list (map asize rs))"
  apply(induct rs rule: bsimp_AALTs.induct)
  apply(auto simp add: asize_fuse)
  done


lemma bsimp_size:
  shows "asize (bsimp r) \<le> asize r"
  apply(induct r)
       apply(simp_all)
   apply (meson Suc_le_mono add_mono_thms_linordered_semiring(1) bsimp_ASEQ_size le_trans)
  apply(rule le_trans)
   apply(rule bsimp_AALTs_size)
  apply(simp)
   apply(rule le_trans)
   apply(rule flts_size)
  by (simp add: sum_list_mono)

lemma bsimp_asize0:
  shows "(\<Sum>x\<leftarrow>rs. asize (bsimp x)) \<le> sum_list (map asize rs)"
  apply(induct rs)
   apply(auto)
  by (simp add: add_mono bsimp_size)

lemma bsimp_AALTs_size2:
  assumes "\<forall>r \<in> set  rs. nonalt r"
  shows "asize (bsimp_AALTs bs rs) \<ge> sum_list (map asize rs)"
  using assms
  apply(induct rs rule: bsimp_AALTs.induct)
    apply(simp_all add: asize_fuse)
  done


lemma qq:
  shows "map (asize \<circ> fuse bs) rs = map asize rs"
  apply(induct rs)
   apply(auto simp add: asize_fuse)
  done

lemma flts_size2:
  assumes "\<exists>bs rs'. AALTs bs  rs' \<in> set rs"
  shows "sum_list (map asize (flts rs)) < sum_list (map asize rs)"
  using assms
  apply(induct rs)
   apply(auto simp add: qq)
   apply (simp add: flts_size less_Suc_eq_le)
  apply(case_tac a)
       apply(auto simp add: qq)
   prefer 2
   apply (simp add: flts_size le_imp_less_Suc)
  using less_Suc_eq by auto

lemma bsimp_AALTs_size3:
  assumes "\<exists>r \<in> set  (map bsimp rs). \<not>nonalt r"
  shows "asize (bsimp (AALTs bs rs)) < asize (AALTs bs rs)"
  using assms flts_size2
  apply  -
  apply(clarify)
  apply(simp)
  apply(drule_tac x="map bsimp rs" in meta_spec)
  apply(drule meta_mp)
  apply (metis list.set_map nonalt.elims(3))
  apply(simp)
  apply(rule order_class.order.strict_trans1)
   apply(rule bsimp_AALTs_size)
  apply(simp)
  by (smt Suc_leI bsimp_asize0 comp_def le_imp_less_Suc le_trans map_eq_conv not_less_eq)




lemma L_bsimp_ASEQ:
  "L (SEQ (erase r1) (erase r2)) = L (erase (bsimp_ASEQ bs r1 r2))"
  apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
  apply(simp_all)
  by (metis erase_fuse fuse.simps(4))

lemma L_bsimp_AALTs:
  "L (erase (AALTs bs rs)) = L (erase (bsimp_AALTs bs rs))"
  apply(induct bs rs rule: bsimp_AALTs.induct)
  apply(simp_all add: erase_fuse)
  done

lemma L_erase_AALTs:
  shows "L (erase (AALTs bs rs)) = \<Union> (L ` erase ` (set rs))"
  apply(induct rs)
   apply(simp)
  apply(simp)
  apply(case_tac rs)
   apply(simp)
  apply(simp)
  done

lemma L_erase_flts:
  shows "\<Union> (L ` erase ` (set (flts rs))) = \<Union> (L ` erase ` (set rs))"
  apply(induct rs rule: flts.induct)
        apply(simp_all)
  apply(auto)
  using L_erase_AALTs erase_fuse apply auto[1]
  by (simp add: L_erase_AALTs erase_fuse)


lemma L_bsimp_erase:
  shows "L (erase r) = L (erase (bsimp r))"
  apply(induct r)
  apply(simp)
  apply(simp)
  apply(simp)
  apply(auto simp add: Sequ_def)[1]
  apply(subst L_bsimp_ASEQ[symmetric])
  apply(auto simp add: Sequ_def)[1]
  apply(subst (asm)  L_bsimp_ASEQ[symmetric])
  apply(auto simp add: Sequ_def)[1]
   apply(simp)
   apply(subst L_bsimp_AALTs[symmetric])
   defer
   apply(simp)
  apply(subst (2)L_erase_AALTs)
  apply(subst L_erase_flts)
  apply(auto)
   apply (simp add: L_erase_AALTs)
  using L_erase_AALTs by blast

lemma bsimp_ASEQ0:
  shows "bsimp_ASEQ bs r1 AZERO = AZERO"
  apply(induct r1)
  apply(auto)
  done



lemma bsimp_ASEQ1:
  assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs"
  shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2"
  using assms
  apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
  apply(auto)
  done

lemma bsimp_ASEQ2:
  shows "bsimp_ASEQ bs (AONE bs1) r2 = fuse (bs @ bs1) r2"
  apply(induct r2)
  apply(auto)
  done


lemma L_bders_simp:
  shows "L (erase (bders_simp r s)) = L (erase (bders r s))"
  apply(induct s arbitrary: r rule: rev_induct)
   apply(simp)
  apply(simp)
  apply(simp add: ders_append)
  apply(simp add: bders_simp_append)
  apply(simp add: L_bsimp_erase[symmetric])
  by (simp add: der_correctness)

lemma b1:
  "bsimp_ASEQ bs1 (AONE bs) r =  fuse (bs1 @ bs) r" 
  apply(induct r)
       apply(auto)
  done

lemma b2:
  assumes "bnullable r"
  shows "bmkeps (fuse bs r) = bs @ bmkeps r"
  by (simp add: assms bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2)

lemma b3:
  shows "bnullable r = bnullable (bsimp r)"
  using L_bsimp_erase bnullable_correctness nullable_correctness by auto


lemma b4:
  shows "bnullable (bders_simp r s) = bnullable (bders r s)"
  by (metis L_bders_simp bnullable_correctness lexer.simps(1) lexer_correct_None option.distinct(1))

lemma q1:
  assumes "\<forall>r \<in> set rs. bmkeps(bsimp r) = bmkeps r"
  shows "map (\<lambda>r. bmkeps(bsimp r)) rs = map bmkeps rs"
  using assms
  apply(induct rs)
  apply(simp)
  apply(simp)
  done

lemma q3:
  assumes "\<exists>r \<in> set rs. bnullable r"
  shows "bmkeps (AALTs bs rs) = bmkeps (bsimp_AALTs bs rs)"
  using assms
  apply(induct bs rs rule: bsimp_AALTs.induct)
    apply(simp)
   apply(simp)
  apply (simp add: b2)
  apply(simp)
  done


lemma fuse_empty:
  shows "fuse [] r = r"
  apply(induct r)
       apply(auto)
  done

lemma flts_fuse:
  shows "map (fuse bs) (flts rs) = flts (map (fuse bs) rs)"
  apply(induct rs arbitrary: bs rule: flts.induct)
        apply(auto simp add: fuse_append)
  done

lemma bsimp_ASEQ_fuse:
  shows "fuse bs1 (bsimp_ASEQ bs2 r1 r2) = bsimp_ASEQ (bs1 @ bs2) r1 r2"
  apply(induct r1 r2 arbitrary: bs1 bs2 rule: bsimp_ASEQ.induct)
  apply(auto)
  done

lemma bsimp_AALTs_fuse:
  assumes "\<forall>r \<in> set rs. fuse bs1 (fuse bs2 r) = fuse (bs1 @ bs2) r"
  shows "fuse bs1 (bsimp_AALTs bs2 rs) = bsimp_AALTs (bs1 @ bs2) rs"
  using assms
  apply(induct bs2 rs arbitrary: bs1 rule: bsimp_AALTs.induct)
  apply(auto)
  done



lemma bsimp_fuse:
  shows "fuse bs (bsimp r) = bsimp (fuse bs r)"
apply(induct r arbitrary: bs)
       apply(simp)
      apply(simp)
     apply(simp)
    prefer 3
    apply(simp)
   apply(simp)
   apply (simp add: bsimp_ASEQ_fuse)
  apply(simp)
  by (simp add: bsimp_AALTs_fuse fuse_append)

lemma bsimp_fuse_AALTs:
  shows "fuse bs (bsimp (AALTs [] rs)) = bsimp (AALTs bs rs)"
  apply(subst bsimp_fuse) 
  apply(simp)
  done

lemma bsimp_fuse_AALTs2:
  shows "fuse bs (bsimp_AALTs [] rs) = bsimp_AALTs bs rs"
  using bsimp_AALTs_fuse fuse_append by auto
  

lemma bsimp_ASEQ_idem:
  assumes "bsimp (bsimp r1) = bsimp r1" "bsimp (bsimp r2) = bsimp r2"
  shows "bsimp (bsimp_ASEQ x1 (bsimp r1) (bsimp r2)) = bsimp_ASEQ x1 (bsimp r1) (bsimp r2)"
  using assms
  apply(case_tac "bsimp r1 = AZERO")
    apply(simp)
 apply(case_tac "bsimp r2 = AZERO")
    apply(simp)
  apply (metis bnullable.elims(2) bnullable.elims(3) bsimp.simps(3) bsimp_ASEQ.simps(2) bsimp_ASEQ.simps(3) bsimp_ASEQ.simps(4) bsimp_ASEQ.simps(5) bsimp_ASEQ.simps(6))  
  apply(case_tac "\<exists>bs. bsimp r1 = AONE bs")
    apply(auto)[1]
    apply(subst bsimp_ASEQ2)
   apply(subst bsimp_ASEQ2)
  apply (metis assms(2) bsimp_fuse)
      apply(subst bsimp_ASEQ1)
      apply(auto)
  done



lemma  k0:
  shows "flts (r # rs1) = flts [r] @ flts rs1"
  apply(induct r arbitrary: rs1)
   apply(auto)
  done

lemma  k00:
  shows "flts (rs1 @ rs2) = flts rs1 @ flts rs2"
  apply(induct rs1 arbitrary: rs2)
   apply(auto)
  by (metis append.assoc k0)

lemma  k0a:
  shows "flts [AALTs bs rs] = map (fuse bs)  rs"
  apply(simp)
  done


lemma  k0b:
  assumes "nonalt r" "r \<noteq> AZERO"
  shows "flts [r] = [r]"
  using assms
  apply(case_tac  r)
  apply(simp_all)
  done

lemma nn1:
  assumes "nonnested (AALTs bs rs)"
  shows "\<nexists>bs1 rs1. flts rs = [AALTs bs1 rs1]"
  using assms
  apply(induct rs rule: flts.induct)
  apply(auto)
  done

lemma nn1q:
  assumes "nonnested (AALTs bs rs)"
  shows "\<nexists>bs1 rs1. AALTs bs1 rs1 \<in> set (flts rs)"
  using assms
  apply(induct rs rule: flts.induct)
  apply(auto)
  done

lemma nn1qq:
  assumes "nonnested (AALTs bs rs)"
  shows "\<nexists>bs1 rs1. AALTs bs1 rs1 \<in> set rs"
  using assms
  apply(induct rs rule: flts.induct)
  apply(auto)
  done

lemma nn10:
  assumes "nonnested (AALTs cs rs)" 
  shows "nonnested (AALTs (bs @ cs) rs)"
  using assms
  apply(induct rs arbitrary: cs bs)
   apply(simp_all)
  apply(case_tac a)
       apply(simp_all)
  done

lemma nn11a:
  assumes "nonalt r"
  shows "nonalt (fuse bs r)"
  using assms
  apply(induct r)
       apply(auto)
  done


lemma nn1a:
  assumes "nonnested r"
  shows "nonnested (fuse bs r)"
  using assms
  apply(induct bs r arbitrary: rule: fuse.induct)
       apply(simp_all add: nn10)
  done  

lemma n0:
  shows "nonnested (AALTs bs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. nonalt r)"
  apply(induct rs  arbitrary: bs)
   apply(auto)
    apply (metis list.set_intros(1) nn1qq nonalt.elims(3))
   apply (metis list.set_intros(2) nn1qq nonalt.elims(3))
  by (metis nonalt.elims(2) nonnested.simps(3) nonnested.simps(4) nonnested.simps(5) nonnested.simps(6) nonnested.simps(7))

  
  

lemma nn1c:
  assumes "\<forall>r \<in> set rs. nonnested r"
  shows "\<forall>r \<in> set (flts rs). nonalt r"
  using assms
  apply(induct rs rule: flts.induct)
        apply(auto)
  apply(rule nn11a)
  by (metis nn1qq nonalt.elims(3))

lemma nn1bb:
  assumes "\<forall>r \<in> set rs. nonalt r"
  shows "nonnested (bsimp_AALTs bs rs)"
  using assms
  apply(induct bs rs rule: bsimp_AALTs.induct)
    apply(auto)
   apply (metis nn11a nonalt.simps(1) nonnested.elims(3))
  using n0 by auto
    
lemma nn1b:
  shows "nonnested (bsimp r)"
  apply(induct r)
       apply(simp_all)
  apply(case_tac "bsimp r1 = AZERO")
    apply(simp)
 apply(case_tac "bsimp r2 = AZERO")
   apply(simp)
    apply(subst bsimp_ASEQ0)
  apply(simp)
  apply(case_tac "\<exists>bs. bsimp r1 = AONE bs")
    apply(auto)[1]
    apply(subst bsimp_ASEQ2)
  apply (simp add: nn1a)    
   apply(subst bsimp_ASEQ1)
      apply(auto)
  apply(rule nn1bb)
  apply(auto)
  by (metis (mono_tags, hide_lams) imageE nn1c set_map)

lemma nn1d:
  assumes "bsimp r = AALTs bs rs"
  shows "\<forall>r1 \<in> set rs. \<forall>  bs. r1 \<noteq> AALTs bs  rs2"
  using nn1b assms
  by (metis nn1qq)

lemma nn_flts:
  assumes "nonnested (AALTs bs rs)"
  shows "\<forall>r \<in>  set (flts rs). nonalt r"
  using assms
  apply(induct rs arbitrary: bs rule: flts.induct)
        apply(auto)
  done



lemma rt:
  shows "sum_list (map asize (flts (map bsimp rs))) \<le> sum_list (map asize rs)"
  apply(induct rs)
   apply(simp)
  apply(simp)
  apply(subst  k0)
  apply(simp)
  by (smt add_le_cancel_right add_mono bsimp_size flts.simps(1) flts_size k0 le_iff_add list.simps(9) map_append sum_list.Cons sum_list.append trans_le_add1)

lemma bsimp_AALTs_qq:
  assumes "1 < length rs"
  shows "bsimp_AALTs bs rs = AALTs bs  rs"
  using  assms
  apply(case_tac rs)
   apply(simp)
  apply(case_tac list)
   apply(simp_all)
  done


lemma bsimp_AALTs1:
  assumes "nonalt r"
  shows "bsimp_AALTs bs (flts [r]) = fuse bs r"
  using  assms
  apply(case_tac r)
   apply(simp_all)
  done

lemma bbbbs:
  assumes "good r" "r = AALTs bs1 rs"
  shows "bsimp_AALTs bs (flts [r]) = AALTs bs (map (fuse bs1) rs)"
  using  assms
  by (metis (no_types, lifting) Nil_is_map_conv append.left_neutral append_butlast_last_id bsimp_AALTs.elims butlast.simps(2) good.simps(4) good.simps(5) k0a map_butlast)

lemma bbbbs1:
  shows "nonalt r \<or> (\<exists>bs rs. r  = AALTs bs rs)"
  using nonalt.elims(3) by auto
  

lemma good_fuse:
  shows "good (fuse bs r) = good r"
  apply(induct r arbitrary: bs)
       apply(auto)
     apply(case_tac r1)
          apply(simp_all)
  apply(case_tac r2)
          apply(simp_all)
  apply(case_tac r2)
            apply(simp_all)
  apply(case_tac r2)
           apply(simp_all)
  apply(case_tac r2)
          apply(simp_all)
  apply(case_tac r1)
          apply(simp_all)
  apply(case_tac r2)
           apply(simp_all)
  apply(case_tac r2)
           apply(simp_all)
  apply(case_tac r2)
           apply(simp_all)
  apply(case_tac r2)
         apply(simp_all)
  apply(case_tac x2a)
    apply(simp_all)
  apply(case_tac list)
    apply(simp_all)
  apply(case_tac x2a)
    apply(simp_all)
  apply(case_tac list)
    apply(simp_all)
  done

lemma good0:
  assumes "rs \<noteq> Nil" "\<forall>r \<in> set rs. nonalt r"
  shows "good (bsimp_AALTs bs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. good r)"
  using  assms
  apply(induct bs rs rule: bsimp_AALTs.induct)
  apply(auto simp add: good_fuse)
  done

lemma good0a:
  assumes "flts (map bsimp rs) \<noteq> Nil" "\<forall>r \<in> set (flts (map bsimp rs)). nonalt r"
  shows "good (bsimp (AALTs bs rs)) \<longleftrightarrow> (\<forall>r \<in> set (flts (map bsimp rs)). good r)"
  using  assms
  apply(simp)
  apply(auto)
  apply(subst (asm) good0)
   apply(simp)
    apply(auto)
   apply(subst good0)
   apply(simp)
    apply(auto)
  done

lemma flts0:
  assumes "r \<noteq> AZERO" "nonalt r"
  shows "flts [r] \<noteq> []"
  using  assms
  apply(induct r)
       apply(simp_all)
  done

lemma flts1:
  assumes "good r" 
  shows "flts [r] \<noteq> []"
  using  assms
  apply(induct r)
       apply(simp_all)
  apply(case_tac x2a)
   apply(simp)
  apply(simp)
  done

lemma flts2:
  assumes "good r" 
  shows "\<forall>r' \<in> set (flts [r]). good r' \<and> nonalt r'"
  using  assms
  apply(induct r)
       apply(simp)
      apply(simp)
     apply(simp)
    prefer 2
    apply(simp)
    apply(auto)[1]
     apply (metis bsimp_AALTs.elims good.simps(4) good.simps(5) good.simps(6) good_fuse)
  apply (metis bsimp_AALTs.elims good.simps(4) good.simps(5) good.simps(6) nn11a)
   apply fastforce
  apply(simp)
  done  


lemma flts3:
  assumes "\<forall>r \<in> set rs. good r \<or> r = AZERO" 
  shows "\<forall>r \<in> set (flts rs). good r"
  using  assms
  apply(induct rs arbitrary: rule: flts.induct)
        apply(simp_all)
  by (metis UnE flts2 k0a set_map)

lemma flts3b:
  assumes "\<exists>r\<in>set rs. good r"
  shows "flts rs \<noteq> []"
  using  assms
  apply(induct rs arbitrary: rule: flts.induct)
        apply(simp)
       apply(simp)
      apply(simp)
      apply(auto)
  done

lemma flts4:
  assumes "bsimp_AALTs bs (flts rs) = AZERO"
  shows "\<forall>r \<in> set rs. \<not> good r"
  using assms
  apply(induct rs arbitrary: bs rule: flts.induct)
        apply(auto)
        defer
  apply (metis (no_types, lifting) Nil_is_append_conv append_self_conv2 bsimp_AALTs.elims butlast.simps(2) butlast_append flts3b nonalt.simps(1) nonalt.simps(2))
  apply (metis arexp.distinct(7) bsimp_AALTs.elims flts2 good.simps(1) good.simps(2) good0 k0b list.distinct(1) list.inject nonalt.simps(3))
  apply (metis arexp.distinct(3) arexp.distinct(7) bsimp_AALTs.elims fuse.simps(3) list.distinct(1) list.inject)
  apply (metis arexp.distinct(7) bsimp_AALTs.elims good.simps(1) good_fuse list.distinct(1) list.inject)
    apply (metis arexp.distinct(7) bsimp_AALTs.elims list.distinct(1) list.inject)
  apply (metis arexp.distinct(7) bsimp_AALTs.elims flts2 good.simps(1) good.simps(33) good0 k0b list.distinct(1) list.inject nonalt.simps(6))
  by (metis (no_types, lifting) Nil_is_append_conv append_Nil2 arexp.distinct(7) bsimp_AALTs.elims butlast.simps(2) butlast_append flts1 flts2 good.simps(1) good0 k0a)


lemma flts_nil:
  assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow>
            good (bsimp y) \<or> bsimp y = AZERO"
  and "\<forall>r\<in>set rs. \<not> good (bsimp r)"
  shows "flts (map bsimp rs) = []"
  using assms
  apply(induct rs)
   apply(simp)
  apply(simp)
  apply(subst k0)
  apply(simp)
  by force

lemma flts_nil2:
  assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow>
            good (bsimp y) \<or> bsimp y = AZERO"
  and "bsimp_AALTs bs (flts (map bsimp rs)) = AZERO"
  shows "flts (map bsimp rs) = []"
  using assms
  apply(induct rs arbitrary: bs)
   apply(simp)
  apply(simp)
  apply(subst k0)
  apply(simp)
  apply(subst (asm) k0)
  apply(auto)
  apply (metis flts.simps(1) flts.simps(2) flts4 k0 less_add_Suc1 list.set_intros(1))
  by (metis flts.simps(2) flts4 k0 less_add_Suc1 list.set_intros(1))
  
  

lemma good_SEQ:
  assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs"
  shows "good (ASEQ bs r1 r2) = (good r1 \<and> good r2)"
  using assms
  apply(case_tac r1)
       apply(simp_all)
  apply(case_tac r2)
          apply(simp_all)
  apply(case_tac r2)
         apply(simp_all)
  apply(case_tac r2)
        apply(simp_all)
  apply(case_tac r2)
       apply(simp_all)
  done

lemma good1:
  shows "good (bsimp a) \<or> bsimp a = AZERO"
  apply(induct a taking: asize rule: measure_induct)
  apply(case_tac x)
  apply(simp)
  apply(simp)
  apply(simp)
  prefer 3
    apply(simp)
   prefer 2
  (*  AALTs case  *)
  apply(simp only:)
   apply(case_tac "x52")
    apply(simp)
  thm good0a
   (*  AALTs list at least one - case *)
   apply(simp only: )
  apply(frule_tac x="a" in spec)
   apply(drule mp)
    apply(simp)
   (* either first element is good, or AZERO *)
    apply(erule disjE)
     prefer 2
    apply(simp)
   (* in  the AZERO case, the size  is smaller *)
   apply(drule_tac x="AALTs x51 list" in spec)
   apply(drule mp)
     apply(simp add: asize0)
    apply(subst (asm) bsimp.simps)
  apply(subst (asm) bsimp.simps)
    apply(assumption)
   (* in the good case *)
  apply(frule_tac x="AALTs x51 list" in spec)
   apply(drule mp)
    apply(simp add: asize0)
   apply(erule disjE)
    apply(rule disjI1)
  apply(simp add: good0)
    apply(subst good0)
      apply (metis Nil_is_append_conv flts1 k0)
  apply (metis ex_map_conv list.simps(9) nn1b nn1c)
  apply(simp)
    apply(subst k0)
    apply(simp)
    apply(auto)[1]
  using flts2 apply blast
    apply(subst  (asm) good0)
      prefer 3
      apply(auto)[1]
     apply auto[1]
    apply (metis ex_map_conv nn1b nn1c)
  (* in  the AZERO case *)
   apply(simp)
   apply(frule_tac x="a" in spec)
   apply(drule mp)
  apply(simp)
   apply(erule disjE)
    apply(rule disjI1)
    apply(subst good0)
  apply(subst k0)
  using flts1 apply blast
     apply(auto)[1]
  apply (metis (no_types, hide_lams) ex_map_conv list.simps(9) nn1b nn1c)
    apply(auto)[1]
  apply(subst (asm) k0)
  apply(auto)[1]
  using flts2 apply blast
  apply(frule_tac x="AALTs x51 list" in spec)
   apply(drule mp)
     apply(simp add: asize0)
    apply(erule disjE)
     apply(simp)
    apply(simp)
  apply (metis add.left_commute flts_nil2 less_add_Suc1 less_imp_Suc_add list.distinct(1) list.set_cases nat.inject)
   apply(subst (2) k0)
  apply(simp)
  (* SEQ case *)
  apply(simp)
  apply(case_tac "bsimp x42 = AZERO")
    apply(simp)
 apply(case_tac "bsimp x43 = AZERO")
   apply(simp)
    apply(subst (2) bsimp_ASEQ0)
  apply(simp)
  apply(case_tac "\<exists>bs. bsimp x42 = AONE bs")
    apply(auto)[1]
   apply(subst bsimp_ASEQ2)
  using good_fuse apply force
   apply(subst bsimp_ASEQ1)
     apply(auto)
  apply(subst  good_SEQ)
  apply(simp)
    apply(simp)
   apply(simp)
  using less_add_Suc1 less_add_Suc2 by blast

lemma good1a:
  assumes "L(erase a) \<noteq> {}"
  shows "good (bsimp a)"
  using good1 assms
  using L_bsimp_erase by force
  


lemma flts_append:
  "flts (xs1 @ xs2) = flts xs1 @ flts xs2"
  apply(induct xs1  arbitrary: xs2  rule: rev_induct)
   apply(auto)
  apply(case_tac xs)
   apply(auto)
   apply(case_tac x)
        apply(auto)
  apply(case_tac x)
        apply(auto)
  done

lemma g1:
  assumes "good (bsimp_AALTs bs rs)"
  shows "bsimp_AALTs bs rs = AALTs bs rs \<or> (\<exists>r. rs = [r] \<and> bsimp_AALTs bs [r] = fuse bs r)"
using assms
    apply(induct rs arbitrary: bs)
  apply(simp)
  apply(case_tac rs)
  apply(simp only:)
  apply(simp)
  apply(case_tac  list)
  apply(simp)
  by simp

lemma flts_0:
  assumes "nonnested (AALTs bs  rs)"
  shows "\<forall>r \<in> set (flts rs). r \<noteq> AZERO"
  using assms
  apply(induct rs arbitrary: bs rule: flts.induct)
        apply(simp) 
       apply(simp) 
      defer
      apply(simp) 
     apply(simp) 
    apply(simp) 
apply(simp) 
  apply(rule ballI)
  apply(simp)
  done

lemma flts_0a:
  assumes "nonnested (AALTs bs  rs)"
  shows "AZERO \<notin> set (flts rs)"
  using assms
  using flts_0 by blast 
  
lemma qqq1:
  shows "AZERO \<notin> set (flts (map bsimp rs))"
  by (metis ex_map_conv flts3 good.simps(1) good1)


fun nonazero :: "arexp \<Rightarrow> bool"
  where
  "nonazero AZERO = False"
| "nonazero r = True"

lemma flts_concat:
  shows "flts rs = concat (map (\<lambda>r. flts [r]) rs)"
  apply(induct rs)
   apply(auto)
  apply(subst k0)
  apply(simp)
  done

lemma flts_single1:
  assumes "nonalt r" "nonazero r"
  shows "flts [r] = [r]"
  using assms
  apply(induct r)
  apply(auto)
  done

lemma flts_qq:
  assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow> good y \<longrightarrow> bsimp y = y" 
          "\<forall>r'\<in>set rs. good r' \<and> nonalt r'"
  shows "flts (map bsimp rs) = rs"
  using assms
  apply(induct rs)
   apply(simp)
  apply(simp)
  apply(subst k0)
  apply(subgoal_tac "flts [bsimp a] =  [a]")
   prefer 2
   apply(drule_tac x="a" in spec)
   apply(drule mp)
    apply(simp)
   apply(auto)[1]
  using good.simps(1) k0b apply blast
  apply(auto)[1]  
  done
  
lemma test:
  assumes "good r"
  shows "bsimp r = r"
  using assms
  apply(induct r taking: "asize" rule: measure_induct)
  apply(erule good.elims)
  apply(simp_all)
  apply(subst k0)
  apply(subst (2) k0)
                apply(subst flts_qq)
                  apply(auto)[1]
                 apply(auto)[1]
                apply (metis append_Cons append_Nil bsimp_AALTs.simps(3) good.simps(1) k0b)
               apply force+
  apply (metis (no_types, lifting) add_Suc add_Suc_right asize.simps(5) bsimp.simps(1) bsimp_ASEQ.simps(19) less_add_Suc1 less_add_Suc2)
  apply (metis add_Suc add_Suc_right arexp.distinct(5) arexp.distinct(7) asize.simps(4) asize.simps(5) bsimp.simps(1) bsimp.simps(2) bsimp_ASEQ1 good.simps(21) good.simps(8) less_add_Suc1 less_add_Suc2)
         apply force+
  apply (metis (no_types, lifting) add_Suc add_Suc_right arexp.distinct(5) arexp.distinct(7) asize.simps(4) asize.simps(5) bsimp.simps(1) bsimp.simps(2) bsimp_ASEQ1 good.simps(25) good.simps(8) less_add_Suc1 less_add_Suc2)
  apply (metis add_Suc add_Suc_right arexp.distinct(7) asize.simps(4) bsimp.simps(2) bsimp_ASEQ1 good.simps(26) good.simps(8) less_add_Suc1 less_add_Suc2)
    apply force+
  done

lemma test2:
  assumes "good r"
  shows "bsimp r = r"
  using assms
  apply(induct r taking: "asize" rule: measure_induct)
  apply(case_tac x)
       apply(simp_all)
   defer  
  (* AALT case *)
   apply(subgoal_tac "1 < length x52")
    prefer 2
    apply(case_tac x52)
     apply(simp)
    apply(simp)
    apply(case_tac list)
     apply(simp)
  apply(simp)
    apply(subst bsimp_AALTs_qq)
    prefer 2
    apply(subst flts_qq)
      apply(auto)[1]
     apply(auto)[1]
   apply(case_tac x52)
     apply(simp)
    apply(simp)
    apply(case_tac list)
     apply(simp)
      apply(simp)
      apply(auto)[1]
  apply (metis (no_types, lifting) bsimp_AALTs.elims good.simps(6) length_Cons length_pos_if_in_set list.size(3) nat_neq_iff)
  apply(simp)  
  apply(case_tac x52)
     apply(simp)
    apply(simp)
    apply(case_tac list)
     apply(simp)
   apply(simp)
   apply(subst k0)
   apply(simp)
   apply(subst (2) k0)
   apply(simp)
  apply (simp add: Suc_lessI flts1 one_is_add)
  (* SEQ case *)
  apply(case_tac "bsimp x42 = AZERO")
   apply simp
  apply (metis asize.elims good.simps(10) good.simps(11) good.simps(12) good.simps(2) good.simps(7) good.simps(9) good_SEQ less_add_Suc1)  
   apply(case_tac "\<exists>bs'. bsimp x42 = AONE bs'")
   apply(auto)[1]
  defer
  apply(case_tac "bsimp x43 = AZERO")
    apply(simp)
  apply (metis bsimp.elims bsimp.simps(3) good.simps(10) good.simps(11) good.simps(12) good.simps(8) good.simps(9) good_SEQ less_add_Suc2)
  apply(auto)  
   apply (subst bsimp_ASEQ1)
      apply(auto)[3]
   apply(auto)[1]
    apply (metis bsimp.simps(3) good.simps(2) good_SEQ less_add_Suc1)
   apply (metis bsimp.simps(3) good.simps(2) good_SEQ less_add_Suc1 less_add_Suc2)
  apply (subst bsimp_ASEQ2)
  apply(drule_tac x="x42" in spec)
  apply(drule mp)
   apply(simp)
  apply(drule mp)
   apply (metis bsimp.elims bsimp.simps(3) good.simps(10) good.simps(11) good.simps(2) good_SEQ)
  apply(simp)
  done


lemma bsimp_idem:
  shows "bsimp (bsimp r) = bsimp r"
  using test good1
  by force



lemma contains48:
  assumes "\<And>x2aa bs bs1. \<lbrakk>x2aa \<in> set x2a; fuse bs x2aa >> bs @ bs1\<rbrakk> \<Longrightarrow> x2aa >> bs1" 
          "AALTs (bs @ x1) x2a >> bs @ bs1"
        shows "AALTs x1 x2a >> bs1"
  using assms
  apply(induct x2a arbitrary: bs x1 bs1)
   apply(auto)
   apply(erule contains.cases)
         apply(auto)
  apply(erule contains.cases)
        apply(auto)
  apply (simp add: contains.intros(4))
  using contains.intros(5) by blast


lemma contains49:
  assumes "fuse bs a >> bs @ bs1"
  shows "a >> bs1"
  using assms
  apply(induct a arbitrary: bs bs1)
       apply(auto)
  using contains.simps apply blast
      apply(erule contains.cases)
            apply(auto)
  apply(rule contains.intros)
    apply(erule contains.cases)
            apply(auto)
     apply(rule contains.intros)
  apply(erule contains.cases)
            apply(auto)
  apply(rule contains.intros)
     apply(auto)[2]
  prefer 2
  apply(erule contains.cases)
         apply(auto)
  apply (simp add: contains.intros(6))
  using contains.intros(7) apply blast
  using contains48 by blast


lemma contains50_IFF2:
  shows "bsimp_AALTs bs [a] >> bs @ bs1 \<longleftrightarrow> fuse bs a >> bs @ bs1"
  by simp

lemma contains50_IFF3:
  shows "bsimp_AALTs bs as >> bs @ bs1  \<longleftrightarrow> (\<exists>a \<in> set as. fuse bs a >> bs @ bs1)"
apply(induct as arbitrary: bs bs1)
   apply(simp)
   apply(auto elim: contains.cases simp add: contains0)
   apply(case_tac as)
     apply(auto)
  apply(case_tac list)
     apply(auto)
  apply(erule contains.cases)
            apply(auto)
      apply (simp add: contains0)
apply(erule contains.cases)
            apply(auto)
  using contains0 apply auto[1]
  apply(erule contains.cases)
           apply(auto)
 apply(erule contains.cases)
          apply(auto)
  using contains0 apply blast
  apply (metis bsimp_AALTs.simps(2) bsimp_AALTs.simps(3) contains.intros(4) contains49 list.exhaust)
  by (smt bsimp_AALTs.simps(3) contains.intros(4) contains.intros(5) contains49 list.set_cases)
  
lemma contains50_IFF4:
  shows "bsimp_AALTs bs as >> bs @ bs1  \<longleftrightarrow> (\<exists>a \<in> set as. a >> bs1)"
  by (meson contains0 contains49 contains50_IFF3)
  
  
lemma contains50:
  assumes "bsimp_AALTs bs rs2 >> bs @ bs1"
  shows "bsimp_AALTs bs (rs1 @ rs2) >> bs @ bs1"
  using assms
  apply(induct rs1 arbitrary: bs rs2 bs1)
   apply(simp)
  apply(auto)
  apply(case_tac rs1)
   apply(simp)
   apply(case_tac rs2)
    apply(simp)
  using contains.simps apply blast
  apply(simp)
  apply(case_tac list)
    apply(simp)
    apply(rule contains.intros)
    back
    apply(rule contains.intros)
  using contains49 apply blast
   apply(simp)
  using contains.intros(5) apply blast
  apply(simp)
  by (metis bsimp_AALTs.elims contains.intros(4) contains.intros(5) contains49 list.distinct(1))

lemma contains51:
  assumes "bsimp_AALTs bs [r] >> bs @ bs1"
  shows "bsimp_AALTs bs ([r] @ rs2) >> bs @ bs1"
  using assms
  apply(induct rs2 arbitrary: bs r bs1)
   apply(simp)
  apply(auto)
  using contains.intros(4) contains49 by blast

lemma contains51a:
  assumes "bsimp_AALTs bs rs2 >> bs @ bs1"
  shows "bsimp_AALTs bs (rs2 @ [r]) >> bs @ bs1"
  using assms
  apply(induct rs2 arbitrary: bs r bs1)
   apply(simp)
   apply(auto)
  using contains.simps apply blast
  apply(case_tac rs2)
   apply(auto)
  using contains3b contains49 apply blast
  apply(case_tac list)
   apply(auto)
  apply(erule contains.cases)
         apply(auto)
  using contains.intros(4) apply auto[1]
   apply(erule contains.cases)
         apply(auto)
    apply (simp add: contains.intros(4) contains.intros(5))
   apply (simp add: contains.intros(5))
  apply(erule contains.cases)
        apply(auto)
   apply (simp add: contains.intros(4))
   apply(erule contains.cases)
        apply(auto)
  using contains.intros(4) contains.intros(5) apply blast
  using contains.intros(5) by blast  
  
lemma contains51b:
  assumes "bsimp_AALTs bs rs >> bs @ bs1"
  shows "bsimp_AALTs bs (rs @ rs2) >> bs @ bs1"
  using assms
  apply(induct rs2 arbitrary: bs rs bs1)
   apply(simp)
  using contains51a by fastforce

lemma contains51c:
  assumes "AALTs (bs @ bs2) rs >> bs @ bs1"
  shows "bsimp_AALTs bs (map (fuse bs2) rs) >> bs @ bs1"
  using assms
  apply(induct rs arbitrary: bs bs1 bs2)
       apply(auto)
  apply(erule contains.cases)
        apply(auto)
  apply(erule contains.cases)
        apply(auto)
  using contains0 contains51 apply auto[1]
  by (metis append.left_neutral append_Cons contains50 list.simps(9))
  

lemma contains51d:
  assumes "fuse bs r >> bs @ bs1"
  shows "bsimp_AALTs bs (flts [r]) >> bs @ bs1"
  using assms
  apply(induct r arbitrary: bs bs1)
       apply(auto)
  by (simp add: contains51c)

lemma contains52:
  assumes "\<exists>r \<in> set rs. (fuse bs r) >> bs @ bs1"
  shows "bsimp_AALTs bs (flts rs) >> bs @ bs1"
  using assms
  apply(induct rs arbitrary: bs bs1)
   apply(simp)
  apply(auto)
   defer
   apply (metis contains50 k0)
  apply(subst k0)
  apply(rule contains51b)
  using contains51d by blast

lemma contains55:
  assumes "a >> bs" 
  shows "bsimp a >> bs"
  using assms
  apply(induct a bs arbitrary:)
        apply(auto intro: contains.intros)
    apply(case_tac "bsimp a1 = AZERO")
     apply(simp)
  using contains.simps apply blast
  apply(case_tac "bsimp a2 = AZERO")
     apply(simp)
  using contains.simps apply blast
  apply(case_tac "\<exists>bs. bsimp a1 = AONE bs")
     apply(auto)[1]
     apply(rotate_tac 1)
     apply(erule contains.cases)
           apply(auto)
     apply (simp add: b1 contains0 fuse_append)
    apply (simp add: bsimp_ASEQ1 contains.intros(3))
   prefer 2
   apply(case_tac rs)
    apply(simp)
  using contains.simps apply blast
   apply (metis contains50 k0)
  (* AALTS case *)
  apply(rule contains52)
  apply(rule_tac x="bsimp r" in bexI)
   apply(auto)
  using contains0 by blast

lemma test1:
  shows "AALT [] (ACHAR [Z] c) (ACHAR [S] c) >> [S]"
  by (metis contains.intros(2) contains.intros(4) contains.intros(5) self_append_conv2)

lemma test1a:
  shows "bsimp (AALT [] (ACHAR [Z] c) (ACHAR [S] c)) = AALT [] (ACHAR [Z] c) (ACHAR [S] c)"
  apply(simp)
  done

lemma q3a:
  assumes "\<exists>r \<in> set rs. bnullable r"
  shows "bmkeps (AALTs bs (map (fuse bs1) rs)) = bmkeps (AALTs (bs@bs1) rs)"
  using assms
  apply(induct rs arbitrary: bs bs1)
   apply(simp)
  apply(simp)
  apply(auto)
   apply (metis append_assoc b2 bnullable_correctness erase_fuse r0)
  apply(case_tac "bnullable a")
   apply (metis append.assoc b2 bnullable_correctness erase_fuse r0)
  apply(case_tac rs)
  apply(simp)
  apply(simp)
  apply(auto)[1]
   apply (metis bnullable_correctness erase_fuse)+
  done



lemma qq4a:
  assumes "\<exists>x\<in>set list. bnullable x"
  shows "\<exists>x\<in>set (flts list). bnullable x"
  using assms
  apply(induct list rule: flts.induct)
        apply(auto)
  by (metis UnCI bnullable_correctness erase_fuse imageI)
  

lemma qs3:
  assumes "\<exists>r \<in> set rs. bnullable r"
  shows "bmkeps (AALTs bs rs) = bmkeps (AALTs bs (flts rs))"
  using assms
  apply(induct rs arbitrary: bs taking: size rule: measure_induct)
  apply(case_tac x)
  apply(simp)
  apply(simp)
  apply(case_tac a)
       apply(simp)
       apply (simp add: r1)
      apply(simp)
      apply (simp add: r0)
     apply(simp)
     apply(case_tac "flts list")
      apply(simp)
  apply (metis L_erase_AALTs L_erase_flts L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(4) mkeps_nullable r2)
     apply(simp)
     apply (simp add: r1)
    prefer 3
    apply(simp)
    apply (simp add: r0)
   prefer 2
   apply(simp)
  apply(case_tac "\<exists>x\<in>set x52. bnullable x")
  apply(case_tac "list")
    apply(simp)
    apply (metis b2 fuse.simps(4) q3a r2)
   apply(erule disjE)
    apply(subst qq1)
     apply(auto)[1]
     apply (metis bnullable_correctness erase_fuse)
    apply(simp)
     apply (metis b2 fuse.simps(4) q3a r2)
    apply(simp)
    apply(auto)[1]
     apply(subst qq1)
      apply (metis bnullable_correctness erase_fuse image_eqI set_map)
     apply (metis b2 fuse.simps(4) q3a r2)
  apply(subst qq1)
      apply (metis bnullable_correctness erase_fuse image_eqI set_map)
    apply (metis b2 fuse.simps(4) q3a r2)
   apply(simp)
   apply(subst qq2)
     apply (metis bnullable_correctness erase_fuse imageE set_map)
  prefer 2
  apply(case_tac "list")
     apply(simp)
    apply(simp)
   apply (simp add: qq4a)
  apply(simp)
  apply(auto)
   apply(case_tac list)
    apply(simp)
   apply(simp)
   apply (simp add: r0)
  apply(case_tac "bnullable (ASEQ x41 x42 x43)")
   apply(case_tac list)
    apply(simp)
   apply(simp)
   apply (simp add: r0)
  apply(simp)
  using qq4a r1 r2 by auto



lemma k1:
  assumes "\<And>x2aa. \<lbrakk>x2aa \<in> set x2a; bnullable x2aa\<rbrakk> \<Longrightarrow> bmkeps x2aa = bmkeps (bsimp x2aa)"
          "\<exists>x\<in>set x2a. bnullable x"
        shows "bmkeps (AALTs x1 (flts x2a)) = bmkeps (AALTs x1 (flts (map bsimp x2a)))"
  using assms
  apply(induct x2a)
  apply fastforce
  apply(simp)
  apply(subst k0)
  apply(subst (2) k0)
  apply(auto)[1]
  apply (metis b3 k0 list.set_intros(1) qs3 r0)
  by (smt b3 imageI insert_iff k0 list.set(2) qq3 qs3 r0 r1 set_map)
  
  
  
lemma bmkeps_simp:
  assumes "bnullable r"
  shows "bmkeps r = bmkeps (bsimp r)"
  using  assms
  apply(induct r)
       apply(simp)
      apply(simp)
     apply(simp)
    apply(simp)
    prefer 3
  apply(simp)
   apply(case_tac "bsimp r1 = AZERO")
    apply(simp)
    apply(auto)[1]
  apply (metis L_bsimp_erase L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(1) mkeps_nullable)
 apply(case_tac "bsimp r2 = AZERO")
    apply(simp)  
    apply(auto)[1]
  apply (metis L_bsimp_erase L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(1) mkeps_nullable)
  apply(case_tac "\<exists>bs. bsimp r1 = AONE bs")
    apply(auto)[1]
    apply(subst b1)
    apply(subst b2)
  apply(simp add: b3[symmetric])
    apply(simp)
   apply(subgoal_tac "bsimp_ASEQ x1 (bsimp r1) (bsimp r2) = ASEQ x1 (bsimp r1) (bsimp r2)")
    prefer 2
  apply (smt b3 bnullable.elims(2) bsimp_ASEQ.simps(17) bsimp_ASEQ.simps(19) bsimp_ASEQ.simps(20) bsimp_ASEQ.simps(21) bsimp_ASEQ.simps(22) bsimp_ASEQ.simps(24) bsimp_ASEQ.simps(25) bsimp_ASEQ.simps(26) bsimp_ASEQ.simps(27) bsimp_ASEQ.simps(29) bsimp_ASEQ.simps(30) bsimp_ASEQ.simps(31))
   apply(simp)
  apply(simp)
  thm q3
  apply(subst q3[symmetric])
   apply simp
  using b3 qq4a apply auto[1]
  apply(subst qs3)
   apply simp
  using k1 by blast

thm bmkeps_retrieve bmkeps_simp bder_retrieve

lemma bmkeps_bder_AALTs:
  assumes "\<exists>r \<in> set rs. bnullable (bder c r)" 
  shows "bmkeps (bder c (bsimp_AALTs bs rs)) = bmkeps (bsimp_AALTs bs (map (bder c) rs))"
  using assms
  apply(induct rs)
   apply(simp)
  apply(simp)
  apply(auto)
  apply(case_tac rs)
    apply(simp)
  apply (metis (full_types) Prf_injval bder_retrieve bmkeps_retrieve bnullable_correctness erase_bder erase_fuse mkeps_nullable retrieve_fuse2)
   apply(simp)
  apply(case_tac  rs)
   apply(simp_all)
  done

lemma bbs0:
  shows "blexer_simp r [] = blexer r []"
  apply(simp add: blexer_def blexer_simp_def)
  done

lemma bbs1:
  shows "blexer_simp r [c] = blexer r [c]"
  apply(simp add: blexer_def blexer_simp_def)
  apply(auto)
    defer
  using b3 apply auto[1]
  using b3 apply auto[1]  
  apply(subst bmkeps_simp[symmetric])
   apply(simp)
  apply(simp)
  done

lemma oo:
  shows "(case (blexer (der c r) s) of None \<Rightarrow> None | Some v \<Rightarrow> Some (injval r c v)) = blexer r (c # s)"
  apply(simp add: blexer_correctness)
  done

lemma XXX2_helper:
  assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow> good y \<longrightarrow> bsimp y = y" 
          "\<forall>r'\<in>set rs. good r' \<and> nonalt r'"
  shows "flts (map (bsimp \<circ> bder c) (flts (map bsimp rs))) = flts (map (bsimp \<circ> bder c) rs)"
  using assms
  apply(induct rs arbitrary: c)
   apply(simp)
  apply(simp)
  apply(subst k0)
  apply(simp add: flts_append)
  apply(subst (2) k0)
  apply(simp add: flts_append)
  apply(subgoal_tac "flts [a] =  [a]")
   prefer 2
  using good.simps(1) k0b apply blast
  apply(simp)
  done

lemma bmkeps_good:
  assumes "good a"
  shows "bmkeps (bsimp a) = bmkeps a"
  using assms
  using test2 by auto


lemma xxx_bder:
  assumes "good r"
  shows "L (erase r) \<noteq> {}"
  using assms
  apply(induct r rule: good.induct)
  apply(auto simp add: Sequ_def)
  done

lemma xxx_bder2:
  assumes "L (erase (bsimp r)) = {}"
  shows "bsimp r = AZERO"
  using assms xxx_bder test2 good1
  by blast

lemma XXX2aa:
  assumes "good a"
  shows "bsimp (bder c (bsimp a)) = bsimp (bder c a)"
  using  assms
  by (simp add: test2)

lemma XXX2aa_ders:
  assumes "good a"
  shows "bsimp (bders (bsimp a) s) = bsimp (bders a s)"
  using  assms
  by (simp add: test2)

lemma XXX4a:
  shows "good (bders_simp (bsimp r) s)  \<or> bders_simp (bsimp r) s = AZERO"
  apply(induct s arbitrary: r rule:  rev_induct)
   apply(simp)
  apply (simp add: good1)
  apply(simp add: bders_simp_append)
  apply (simp add: good1)
  done

lemma XXX4a_good:
  assumes "good a"
  shows "good (bders_simp a s) \<or> bders_simp a s = AZERO"
  using assms
  apply(induct s arbitrary: a rule:  rev_induct)
   apply(simp)
  apply(simp add: bders_simp_append)
  apply (simp add: good1)
  done

lemma XXX4a_good_cons:
  assumes "s \<noteq> []"
  shows "good (bders_simp a s) \<or> bders_simp a s = AZERO"
  using assms
  apply(case_tac s)
   apply(auto)
  using XXX4a by blast

lemma XXX4b:
  assumes "good a" "L (erase (bders_simp a s)) \<noteq> {}"
  shows "good (bders_simp a s)"
  using assms
  apply(induct s arbitrary: a)
   apply(simp)
  apply(simp)
  apply(subgoal_tac "L (erase (bder a aa)) = {} \<or> L (erase (bder a aa)) \<noteq> {}")
   prefer 2
   apply(auto)[1]
  apply(erule disjE)
   apply(subgoal_tac "bsimp (bder a aa) = AZERO")
    prefer 2
  using L_bsimp_erase xxx_bder2 apply auto[1]
   apply(simp)
  apply (metis L.simps(1) XXX4a erase.simps(1))  
  apply(drule_tac x="bsimp (bder a aa)" in meta_spec)
  apply(drule meta_mp)
  apply simp
  apply(rule good1a)
  apply(auto)
  done

lemma bders_AZERO:
  shows "bders AZERO s = AZERO"
  and   "bders_simp AZERO s = AZERO"
   apply (induct s)
     apply(auto)
  done

lemma LA:
  assumes "\<Turnstile> v : ders s (erase r)"
  shows "retrieve (bders r s) v = retrieve r (flex (erase r) id s v)"
  using assms
  apply(induct s arbitrary: r v rule: rev_induct)
   apply(simp)
  apply(simp add: bders_append ders_append)
  apply(subst bder_retrieve)
   apply(simp)
  apply(drule Prf_injval)
  by (simp add: flex_append)


lemma LB:
  assumes "s \<in> (erase r) \<rightarrow> v" 
  shows "retrieve r v = retrieve r (flex (erase r) id s (mkeps (ders s (erase r))))"
  using assms
  apply(induct s arbitrary: r v rule: rev_induct)
   apply(simp)
   apply(subgoal_tac "v = mkeps (erase r)")
    prefer 2
  apply (simp add: Posix1(1) Posix_determ Posix_mkeps nullable_correctness)
   apply(simp)
  apply(simp add: flex_append ders_append)
  by (metis Posix_determ Posix_flex Posix_injval Posix_mkeps ders_snoc lexer_correctness(2) lexer_flex)

lemma LB_sym:
  assumes "s \<in> (erase r) \<rightarrow> v" 
  shows "retrieve r v = retrieve r (flex (erase r) id s (mkeps (erase (bders r s))))"
  using assms
  by (simp add: LB)


lemma LC:
  assumes "s \<in> (erase r) \<rightarrow> v" 
  shows "retrieve r v = retrieve (bders r s) (mkeps (erase (bders r s)))"
  apply(simp)
  by (metis LA LB Posix1(1) assms lexer_correct_None lexer_flex mkeps_nullable)


lemma L0:
  assumes "bnullable a"
  shows "retrieve (bsimp a) (mkeps (erase (bsimp a))) = retrieve a (mkeps (erase a))"
  using assms b3 bmkeps_retrieve bmkeps_simp bnullable_correctness
  by (metis b3 bmkeps_retrieve bmkeps_simp bnullable_correctness)

thm bmkeps_retrieve

lemma L0a:
  assumes "s \<in> L(erase a)"
  shows "retrieve (bsimp (bders a s)) (mkeps (erase (bsimp (bders a s)))) = 
         retrieve (bders a s) (mkeps (erase (bders a s)))"
  using assms
  by (metis L0 bnullable_correctness erase_bders lexer_correct_None lexer_flex)
  
lemma L0aa:
  assumes "s \<in> L (erase a)"
  shows "[] \<in> erase (bsimp (bders a s)) \<rightarrow> mkeps (erase (bsimp (bders a s)))"
  using assms
  by (metis Posix_mkeps b3 bnullable_correctness erase_bders lexer_correct_None lexer_flex)

lemma L0aaa:
  assumes "[c] \<in> L (erase a)"
  shows "[c] \<in> (erase a) \<rightarrow> flex (erase a) id [c] (mkeps (erase (bder c a)))"
  using assms
  by (metis bders.simps(1) bders.simps(2) erase_bders lexer_correct_None lexer_correct_Some lexer_flex option.inject)

lemma L0aaaa:
  assumes "[c] \<in> L (erase a)"
  shows "[c] \<in> (erase a) \<rightarrow> flex (erase a) id [c] (mkeps (erase (bders a [c])))"
  using assms
  using L0aaa by auto
    

lemma L02:
  assumes "bnullable (bder c a)"
  shows "retrieve (bsimp a) (flex (erase (bsimp a)) id [c] (mkeps (erase (bder c (bsimp a))))) = 
         retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a))))"
  using assms
  apply(simp)
  using bder_retrieve L0 bmkeps_simp bmkeps_retrieve L0  LA LB
  apply(subst bder_retrieve[symmetric])
  apply (metis L_bsimp_erase bnullable_correctness der_correctness erase_bder mkeps_nullable nullable_correctness)
  apply(simp)
  done

lemma L02_bders:
  assumes "bnullable (bders a s)"
  shows "retrieve (bsimp a) (flex (erase (bsimp a)) id s (mkeps (erase (bders (bsimp a) s)))) = 
         retrieve (bders (bsimp a) s) (mkeps (erase (bders (bsimp a) s)))"
  using assms
  by (metis LA L_bsimp_erase bnullable_correctness ders_correctness erase_bders mkeps_nullable nullable_correctness)


  

lemma L03:
  assumes "bnullable (bder c a)"
  shows "retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a)))) =
         bmkeps (bsimp (bder c (bsimp a)))"
  using assms
  by (metis L0 L_bsimp_erase bmkeps_retrieve bnullable_correctness der_correctness erase_bder nullable_correctness)

lemma L04:
  assumes "bnullable (bder c a)"
  shows "retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a)))) =
         retrieve (bsimp (bder c (bsimp a))) (mkeps (erase (bsimp (bder c (bsimp a)))))"     
  using assms
  by (metis L0 L_bsimp_erase bnullable_correctness der_correctness erase_bder nullable_correctness)
    
lemma L05:
  assumes "bnullable (bder c a)"
  shows "retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a)))) =
         retrieve (bsimp (bder c (bsimp a))) (mkeps (erase (bsimp (bder c (bsimp a)))))" 
  using assms
  using L04 by auto 

lemma L06:
  assumes "bnullable (bder c a)"
  shows "bmkeps (bder c (bsimp a)) = bmkeps (bsimp (bder c (bsimp a)))"
  using assms
  by (metis L03 L_bsimp_erase bmkeps_retrieve bnullable_correctness der_correctness erase_bder nullable_correctness) 

lemma L07:
  assumes "s \<in> L (erase r)"
  shows "retrieve r (flex (erase r) id s (mkeps (ders s (erase r)))) 
            = retrieve (bders r s) (mkeps (erase (bders r s)))"
  using assms
  using LB LC lexer_correct_Some by auto

lemma L06_2:
  assumes "bnullable (bders a [c,d])"
  shows "bmkeps (bders (bsimp a) [c,d]) = bmkeps (bsimp (bders (bsimp a) [c,d]))"
  using assms
  apply(simp)
  by (metis L_bsimp_erase bmkeps_simp bnullable_correctness der_correctness erase_bder nullable_correctness)
  
lemma L06_bders:
  assumes "bnullable (bders a s)"
  shows "bmkeps (bders (bsimp a) s) = bmkeps (bsimp (bders (bsimp a) s))"
  using assms
  by (metis L_bsimp_erase bmkeps_simp bnullable_correctness ders_correctness erase_bders nullable_correctness)

lemma LLLL:
  shows "L (erase a) =  L (erase (bsimp a))"
  and "L (erase a) = {flat v | v. \<Turnstile> v: (erase a)}"
  and "L (erase a) = {flat v | v. \<Turnstile> v: (erase (bsimp a))}"
  using L_bsimp_erase apply(blast)
  apply (simp add: L_flat_Prf)
  using L_bsimp_erase L_flat_Prf apply(auto)[1]
  done  
    


lemma L07XX:
  assumes "s \<in> L (erase a)"
  shows "s \<in> erase a \<rightarrow> flex (erase a) id s (mkeps (ders s (erase a)))"
  using assms
  by (meson lexer_correct_None lexer_correctness(1) lexer_flex)

lemma LX0:
  assumes "s \<in> L r"
  shows "decode (bmkeps (bders (intern r) s)) r = Some(flex r id s (mkeps (ders s r)))"
  by (metis assms blexer_correctness blexer_def lexer_correct_None lexer_flex)

lemma L1:
  assumes "s \<in> r \<rightarrow> v" 
  shows "decode (bmkeps (bders (intern r) s)) r = Some v"
  using assms
  by (metis blexer_correctness blexer_def lexer_correctness(1) option.distinct(1))

lemma L2:
  assumes "s \<in> (der c r) \<rightarrow> v" 
  shows "decode (bmkeps (bders (intern r) (c # s))) r = Some (injval r c v)"
  using assms
  apply(subst bmkeps_retrieve)
  using Posix1(1) lexer_correct_None lexer_flex apply fastforce
  using MAIN_decode
  apply(subst MAIN_decode[symmetric])
   apply(simp)
   apply (meson Posix1(1) lexer_correct_None lexer_flex mkeps_nullable)
  apply(simp)
  apply(subgoal_tac "v = flex (der c r) id s (mkeps (ders s (der c r)))")
   prefer 2
   apply (metis Posix_determ lexer_correctness(1) lexer_flex option.distinct(1))
  apply(simp)
  apply(subgoal_tac "injval r c (flex (der c r) id s (mkeps (ders s (der c r)))) =
    (flex (der c r) ((\<lambda>v. injval r c v) o id) s (mkeps (ders s (der c r))))")
   apply(simp)
  using flex_fun_apply by blast
  
lemma L3:
  assumes "s2 \<in> (ders s1 r) \<rightarrow> v" 
  shows "decode (bmkeps (bders (intern r) (s1 @ s2))) r = Some (flex r id s1 v)"
  using assms
  apply(induct s1 arbitrary: r s2 v rule: rev_induct)
   apply(simp)
  using L1 apply blast
  apply(simp add: ders_append)
  apply(drule_tac x="r" in meta_spec)
  apply(drule_tac x="x # s2" in meta_spec)
  apply(drule_tac x="injval (ders xs r) x v" in meta_spec)
  apply(drule meta_mp)
   defer
   apply(simp)
   apply(simp add:  flex_append)
  by (simp add: Posix_injval)



lemma bders_snoc:
  "bder c (bders a s) = bders a (s @ [c])"
  apply(simp add: bders_append)
  done


lemma QQ1:
  shows "bsimp (bders (bsimp a) []) = bders_simp (bsimp a) []"
  apply(simp)
  apply(simp add: bsimp_idem)
  done

lemma QQ2:
  shows "bsimp (bders (bsimp a) [c]) = bders_simp (bsimp a) [c]"
  apply(simp)
  done

lemma XXX2a_long:
  assumes "good a"
  shows "bsimp (bder c (bsimp a)) = bsimp (bder c a)"
  using  assms
  apply(induct a arbitrary: c taking: asize rule: measure_induct)
  apply(case_tac x)
       apply(simp)
      apply(simp)
     apply(simp)
  prefer 3
    apply(simp)
   apply(simp)
   apply(auto)[1]
apply(case_tac "x42 = AZERO")
     apply(simp)
   apply(case_tac "x43 = AZERO")
     apply(simp)
  using test2 apply force  
  apply(case_tac "\<exists>bs. x42 = AONE bs")
     apply(clarify)
     apply(simp)
    apply(subst bsimp_ASEQ1)
       apply(simp)
  using b3 apply force
  using bsimp_ASEQ0 test2 apply force
  thm good_SEQ test2
     apply (simp add: good_SEQ test2)
    apply (simp add: good_SEQ test2)
  apply(case_tac "x42 = AZERO")
     apply(simp)
   apply(case_tac "x43 = AZERO")
    apply(simp)
  apply (simp add: bsimp_ASEQ0)
  apply(case_tac "\<exists>bs. x42 = AONE bs")
     apply(clarify)
     apply(simp)
    apply(subst bsimp_ASEQ1)
      apply(simp)
  using bsimp_ASEQ0 test2 apply force
     apply (simp add: good_SEQ test2)
    apply (simp add: good_SEQ test2)
  apply (simp add: good_SEQ test2)
  (* AALTs case *)
  apply(simp)
  using test2 by fastforce


lemma bder_bsimp_AALTs:
  shows "bder c (bsimp_AALTs bs rs) = bsimp_AALTs bs (map (bder c) rs)"
  apply(induct bs rs rule: bsimp_AALTs.induct)
    apply(simp)
   apply(simp)
   apply (simp add: bder_fuse)
  apply(simp)
  done

lemma bders_bsimp_AALTs:
  shows "bders (bsimp_AALTs bs rs) s = bsimp_AALTs bs (map (\<lambda>a. bders a s) rs)"
  apply(induct s arbitrary: bs rs rule: rev_induct)
    apply(simp)
  apply(simp add: bders_append)
  apply(simp add: bder_bsimp_AALTs)
  apply(simp add: comp_def)
  done

lemma flts_nothing:
  assumes "\<forall>r \<in> set rs. r \<noteq> AZERO" "\<forall>r \<in> set rs. nonalt r"
  shows "flts rs = rs"
  using assms
  apply(induct rs rule: flts.induct)
        apply(auto)
  done

lemma flts_flts:
  assumes "\<forall>r \<in> set rs. good r"
  shows "flts (flts rs) = flts rs"
  using assms
  apply(induct rs taking: "\<lambda>rs. sum_list  (map asize rs)" rule: measure_induct)
  apply(case_tac x)
   apply(simp)
  apply(simp)
  apply(case_tac a)
       apply(simp_all  add: bder_fuse flts_append)
  apply(subgoal_tac "\<forall>r \<in> set x52. r \<noteq> AZERO")
   prefer 2
  apply (metis Nil_is_append_conv bsimp_AALTs.elims good.simps(1) good.simps(5) good0 list.distinct(1) n0 nn1b split_list_last test2)
  apply(subgoal_tac "\<forall>r \<in> set x52. nonalt r")
   prefer 2
   apply (metis n0 nn1b test2)
  by (metis flts_fuse flts_nothing)


lemma iii:
  assumes "bsimp_AALTs bs rs \<noteq> AZERO"
  shows "rs \<noteq> []"
  using assms
  apply(induct bs  rs rule: bsimp_AALTs.induct)
    apply(auto)
  done

lemma CT1_SEQ:
  shows "bsimp (ASEQ bs a1 a2) = bsimp (ASEQ bs (bsimp a1) (bsimp a2))"
  apply(simp add: bsimp_idem)
  done

lemma CT1:
  shows "bsimp (AALTs bs as) = bsimp (AALTs bs (map  bsimp as))"
  apply(induct as arbitrary: bs)
   apply(simp)
  apply(simp)
  by (simp add: bsimp_idem comp_def)
  
lemma CT1a:
  shows "bsimp (AALT bs a1 a2) = bsimp(AALT bs (bsimp a1) (bsimp a2))"
  by (metis CT1 list.simps(8) list.simps(9))

lemma WWW2:
  shows "bsimp (bsimp_AALTs bs1 (flts (map bsimp as1))) =
         bsimp_AALTs bs1 (flts (map bsimp as1))"
  by (metis bsimp.simps(2) bsimp_idem)

lemma CT1b:
  shows "bsimp (bsimp_AALTs bs as) = bsimp (bsimp_AALTs bs (map bsimp as))"
  apply(induct bs as rule: bsimp_AALTs.induct)
    apply(auto simp add: bsimp_idem)
  apply (simp add: bsimp_fuse bsimp_idem)
  by (metis bsimp_idem comp_apply)
  
  


(* CT *)

lemma CTa:
  assumes "\<forall>r \<in> set as. nonalt r \<and> r \<noteq> AZERO"
  shows  "flts as = as"
  using assms
  apply(induct as)
   apply(simp)
  apply(case_tac as)
   apply(simp)
  apply (simp add: k0b)
  using flts_nothing by auto

lemma CT0:
  assumes "\<forall>r \<in> set as1. nonalt r \<and> r \<noteq> AZERO" 
  shows "flts [bsimp_AALTs bs1 as1] =  flts (map (fuse bs1) as1)"
  using assms CTa
  apply(induct as1 arbitrary: bs1)
    apply(simp)
   apply(simp)
  apply(case_tac as1)
   apply(simp)
  apply(simp)
proof -
fix a :: arexp and as1a :: "arexp list" and bs1a :: "bit list" and aa :: arexp and list :: "arexp list"
  assume a1: "nonalt a \<and> a \<noteq> AZERO \<and> nonalt aa \<and> aa \<noteq> AZERO \<and> (\<forall>r\<in>set list. nonalt r \<and> r \<noteq> AZERO)"
  assume a2: "\<And>as. \<forall>r\<in>set as. nonalt r \<and> r \<noteq> AZERO \<Longrightarrow> flts as = as"
  assume a3: "as1a = aa # list"
  have "flts [a] = [a]"
using a1 k0b by blast
then show "fuse bs1a a # fuse bs1a aa # map (fuse bs1a) list = flts (fuse bs1a a # fuse bs1a aa # map (fuse bs1a) list)"
  using a3 a2 a1 by (metis (no_types) append.left_neutral append_Cons flts_fuse k00 k0b list.simps(9))
qed
  
  
lemma CT01:
  assumes "\<forall>r \<in> set as1. nonalt r \<and> r \<noteq> AZERO" "\<forall>r \<in> set as2. nonalt r \<and> r \<noteq> AZERO" 
  shows "flts [bsimp_AALTs bs1 as1, bsimp_AALTs bs2 as2] =  flts ((map (fuse bs1) as1) @ (map (fuse bs2) as2))"
  using assms CT0
  by (metis k0 k00)
  


lemma CT_exp:
  assumes "\<forall>a \<in> set as. bsimp (bder c (bsimp a)) = bsimp (bder c a)"
  shows "map bsimp (map (bder c) as) = map bsimp (map (bder c) (map bsimp as))"
  using assms
  apply(induct as)
   apply(auto)
  done

lemma asize_set:
  assumes "a \<in> set as"
  shows "asize a < Suc (sum_list (map asize as))"
  using assms
  apply(induct as arbitrary: a)
   apply(auto)
  using le_add2 le_less_trans not_less_eq by blast

lemma L_erase_bder_simp:
  shows "L (erase (bsimp (bder a r))) = L (der a (erase (bsimp r)))"
  using L_bsimp_erase der_correctness by auto

lemma PPP0: 
  assumes "s \<in> r \<rightarrow> v"
  shows "(bders (intern r) s) >> code v"
  using assms
  by (smt L07 L1 LX0 Posix1(1) Posix_Prf contains6 erase_bders erase_intern lexer_correct_None lexer_flex mkeps_nullable option.inject retrieve_code)

thm L07 L1 LX0 Posix1(1) Posix_Prf contains6 erase_bders erase_intern lexer_correct_None lexer_flex mkeps_nullable option.inject retrieve_code


lemma PPP0_isar: 
  assumes "s \<in> r \<rightarrow> v"
  shows "(bders (intern r) s) >> code v"
proof -
  from assms have a1: "\<Turnstile> v : r" using Posix_Prf by simp
  
  from assms have "s \<in> L r" using Posix1(1) by auto
  then have "[] \<in> L (ders s r)" by (simp add: ders_correctness Ders_def)
  then have a2: "\<Turnstile> mkeps (ders s r) : ders s r"
    by (simp add: mkeps_nullable nullable_correctness) 

  have "retrieve (bders (intern r) s) (mkeps (ders s r)) =  
        retrieve (intern r) (flex r id s (mkeps (ders s r)))" using a2 LA LB bder_retrieve  by simp
  also have "... = retrieve (intern r) v"
    using LB assms by auto 
  also have "... = code v" using a1 by (simp add: retrieve_code) 
  finally have "retrieve (bders (intern r) s) (mkeps (ders s r)) = code v" by simp
  moreover
  have "\<Turnstile> mkeps (ders s r) : erase (bders (intern r) s)" using a2 by simp 
  then have "bders (intern r) s >> retrieve (bders (intern r) s) (mkeps (ders s r))"
    by (rule contains6)  
  ultimately
  show "(bders (intern r) s) >> code v" by simp
qed

lemma PPP0b: 
  assumes "s \<in> r \<rightarrow> v"
  shows "(intern r) >> code v"
  using assms
  using Posix_Prf contains2 by auto
  
lemma PPP0_eq:
  assumes "s \<in> r \<rightarrow> v"
  shows "(intern r >> code v) = (bders (intern r) s >> code v)"
  using assms
  using PPP0_isar PPP0b by blast

lemma f_cont1:
  assumes "fuse bs1 a >> bs"
  shows "\<exists>bs2. bs = bs1 @ bs2"
  using assms
  apply(induct a arbitrary: bs1 bs)
       apply(auto elim: contains.cases)
  done


lemma f_cont2:
  assumes "bsimp_AALTs bs1 as >> bs"
  shows "\<exists>bs2. bs = bs1 @ bs2"
  using assms
  apply(induct bs1 as arbitrary: bs rule: bsimp_AALTs.induct)
    apply(auto elim: contains.cases f_cont1)
  done

lemma contains_SEQ1:
  assumes "bsimp_ASEQ bs r1 r2 >> bsX"
  shows "\<exists>bs1 bs2. r1 >> bs1 \<and> r2 >> bs2 \<and> bsX = bs @ bs1 @ bs2"
  using assms
  apply(auto)
  apply(case_tac "r1 = AZERO")
   apply(auto)
  using contains.simps apply blast
  apply(case_tac "r2 = AZERO")
   apply(auto)
   apply(simp add: bsimp_ASEQ0)
  using contains.simps apply blast
  apply(case_tac "\<exists>bsX. r1 = AONE bsX")
   apply(auto)
   apply(simp add: bsimp_ASEQ2)
   apply (metis append_assoc contains.intros(1) contains49 f_cont1)
  apply(simp add: bsimp_ASEQ1)
  apply(erule contains.cases)
        apply(auto)
  done

lemma contains59:
  assumes "AALTs bs rs >> bs2"
  shows "\<exists>r \<in> set rs. (fuse bs r) >> bs2"
 using assms
  apply(induct rs arbitrary: bs bs2)
  apply(auto)
   apply(erule contains.cases)
        apply(auto)
  apply(erule contains.cases)
       apply(auto)
  using contains0 by blast

lemma contains60:
  assumes "\<exists>r \<in> set rs. fuse bs r >> bs2"
  shows "AALTs bs rs >> bs2"
  using assms
  apply(induct rs arbitrary: bs bs2)
   apply(auto)
  apply (metis contains3b contains49 f_cont1)
  using contains.intros(5) f_cont1 by blast
  
  

lemma contains61:
  assumes "bsimp_AALTs bs rs >> bs2"
  shows "\<exists>r \<in> set rs. (fuse bs r) >> bs2"
  using assms
  apply(induct arbitrary: bs2 rule: bsimp_AALTs.induct)
    apply(auto)
  using contains.simps apply blast
  using contains59 by fastforce

lemma contains61b:
  assumes "bsimp_AALTs bs rs >> bs2"
  shows "\<exists>r \<in> set (flts rs). (fuse bs r) >> bs2"
  using assms
  apply(induct bs rs arbitrary: bs2 rule: bsimp_AALTs.induct)
    apply(auto)
  using contains.simps apply blast
  using contains51d contains61 f_cont1 apply blast
  by (metis bsimp_AALTs.simps(3) contains52 contains61 f_cont2)
  
  

lemma contains61a:
  assumes "\<exists>r \<in> set rs. (fuse bs r) >> bs2"
  shows "bsimp_AALTs bs rs >> bs2" 
  using assms
  apply(induct rs arbitrary: bs2 bs)
   apply(auto)
   apply (metis bsimp_AALTs.elims contains60 list.distinct(1) list.inject list.set_intros(1))
  by (metis append_Cons append_Nil contains50 f_cont2)

lemma contains62:
  assumes "bsimp_AALTs bs (rs1 @ rs2) >> bs2"
  shows "bsimp_AALTs bs rs1 >> bs2 \<or> bsimp_AALTs bs rs2 >> bs2"
  using assms
  apply -
  apply(drule contains61)
  apply(auto)
   apply(case_tac rs1)
    apply(auto)
  apply(case_tac list)
     apply(auto)
  apply (simp add: contains60)
   apply(case_tac list)
    apply(auto)
  apply (simp add: contains60)
  apply (meson contains60 list.set_intros(2))
   apply(case_tac rs2)
    apply(auto)
  apply(case_tac list)
     apply(auto)
  apply (simp add: contains60)
   apply(case_tac list)
    apply(auto)
  apply (simp add: contains60)
  apply (meson contains60 list.set_intros(2))
  done

lemma contains63:
  assumes "AALTs bs (map (fuse bs1) rs) >> bs3"
  shows "AALTs (bs @ bs1) rs >> bs3"
  using assms
  apply(induct rs arbitrary: bs bs1 bs3)
   apply(auto elim: contains.cases)
    apply(erule contains.cases)
        apply(auto)
  apply (simp add: contains0 contains60 fuse_append)
  by (metis contains.intros(5) contains59 f_cont1)
    
lemma contains64:
  assumes "bsimp_AALTs bs (flts rs1 @ flts rs2) >> bs2" "\<forall>r \<in> set rs2. \<not> fuse bs r >> bs2"
  shows "bsimp_AALTs bs (flts rs1) >> bs2"
  using assms
  apply(induct rs2 arbitrary: rs1 bs bs2)
   apply(auto)
  apply(drule_tac x="rs1" in meta_spec)
    apply(drule_tac x="bs" in meta_spec)
  apply(drule_tac x="bs2" in meta_spec)
  apply(drule meta_mp)
   apply(drule contains61)
   apply(auto)
  using contains51b contains61a f_cont1 apply blast
  apply(subst (asm) k0)
  apply(auto)
   prefer 2
  using contains50 contains61a f_cont1 apply blast
  apply(case_tac a)
       apply(auto)
  by (metis contains60 fuse_append)
  
  

lemma contains65:
  assumes "bsimp_AALTs bs (flts rs) >> bs2"
  shows "\<exists>r \<in> set rs. (fuse bs r) >> bs2"
  using assms
  apply(induct rs arbitrary: bs bs2 taking: "\<lambda>rs. sum_list (map asize rs)" rule: measure_induct)
  apply(case_tac x)
        apply(auto elim: contains.cases)
  apply(case_tac list)
   apply(auto elim: contains.cases)
   apply(case_tac a)
        apply(auto elim: contains.cases)
   apply(drule contains61)
   apply(auto)
   apply (metis contains60 fuse_append)
  apply(case_tac lista)
   apply(auto elim: contains.cases)
   apply(subst (asm) k0)
   apply(drule contains62)
   apply(auto)
   apply(case_tac a)
         apply(auto elim: contains.cases)
   apply(case_tac x52)
   apply(auto elim: contains.cases)
  apply(case_tac list)
   apply(auto elim: contains.cases)
  apply (simp add: contains60 fuse_append)
   apply(erule contains.cases)
          apply(auto)
     apply (metis append.left_neutral contains0 contains60 fuse.simps(4) in_set_conv_decomp)
  apply(erule contains.cases)
          apply(auto)
     apply (metis contains0 contains60 fuse.simps(4) list.set_intros(1) list.set_intros(2))
  apply (simp add: contains.intros(5) contains63)
   apply(case_tac aa)
        apply(auto)
  apply (meson contains60 contains61 contains63)
  apply(subst (asm) k0)
  apply(drule contains64)
   apply(auto)[1]
  by (metis append_Nil2 bsimp_AALTs.simps(2) contains50 contains61a contains64 f_cont2 flts.simps(1))


lemma contains55a:
  assumes "bsimp r >> bs"
  shows "r >> bs"
  using assms
  apply(induct r arbitrary: bs)
       apply(auto)
   apply(frule contains_SEQ1)
  apply(auto)
   apply (simp add: contains.intros(3))
  apply(frule f_cont2)
  apply(auto) 
  apply(drule contains65)
  apply(auto)
  using contains0 contains49 contains60 by blast


lemma PPP1_eq:
  shows "bsimp r >> bs \<longleftrightarrow> r >> bs"
  using contains55 contains55a by blast


definition "SET a \<equiv> {bs . a >> bs}"

lemma "SET(bsimp a) \<subseteq> SET(a)"
  unfolding SET_def
  apply(auto simp add: PPP1_eq)
  done

lemma retrieve_code_bder:
  assumes "\<Turnstile> v : der c r"
  shows "code (injval r c v) = retrieve (bder c (intern r)) v"
  using assms
  by (simp add: Prf_injval bder_retrieve retrieve_code)

lemma Etrans:
  assumes "a >> s" "s = t" 
  shows "a >> t"
  using assms by simp



lemma retrieve_code_bders:
  assumes "\<Turnstile> v : ders s r"
  shows "code (flex r id s v) = retrieve (bders (intern r) s) v"
  using assms
  apply(induct s arbitrary: v r rule: rev_induct)
   apply(auto simp add: ders_append flex_append bders_append)
  apply (simp add: retrieve_code)
  apply(frule Prf_injval)
  apply(drule_tac meta_spec)+
  apply(drule meta_mp)
   apply(assumption)
  apply(simp)
  apply(subst bder_retrieve)
   apply(simp)
  apply(simp)
  done

lemma contains70:
 assumes "s \<in> L(r)"
 shows "bders (intern r) s >> code (flex r id s (mkeps (ders s r)))"
  apply(subst PPP0_eq[symmetric])
   apply (meson assms lexer_correct_None lexer_correctness(1) lexer_flex)
  by (metis L07XX PPP0b assms erase_intern)



lemma PPP:
  assumes "\<Turnstile> v : r"
  shows "intern r >> (retrieve (intern r) v)"
  using assms
  using contains5 by blast
  
  
 
  
  
  


definition FC where
 "FC a s v = retrieve a (flex (erase a) id s v)"

definition FE where
 "FE a s = retrieve a (flex (erase a) id s (mkeps (ders s (erase a))))"

definition PV where
  "PV r s v = flex r id s v"

definition PX where
  "PX r s = PV r s (mkeps (ders s r))"


lemma FE_PX:
  shows "FE r s = retrieve r (PX (erase r) s)"
  unfolding FE_def PX_def PV_def by(simp)

lemma FE_PX_code:
  assumes "s \<in> L r"
  shows "FE (intern r) s = code (PX r s)"
  unfolding FE_def PX_def PV_def 
  using assms
  by (metis L07XX Posix_Prf erase_intern retrieve_code)
  

lemma PV_id[simp]:
  shows "PV r [] v = v"
  by (simp add: PV_def)

lemma PX_id[simp]:
  shows "PX r [] = mkeps r"
  by (simp add: PX_def)

lemma PV_cons:
  shows "PV r (c # s) v = injval r c (PV (der c r) s v)"
  apply(simp add: PV_def flex_fun_apply)
  done

lemma PX_cons:
  shows "PX r (c # s) = injval r c (PX (der c r) s)"
  apply(simp add: PX_def PV_cons)
  done

lemma PV_append:
  shows "PV r (s1 @ s2) v = PV r s1 (PV (ders s1 r) s2 v)"
  apply(simp add: PV_def flex_append)
  by (simp add: flex_fun_apply2)
  
lemma PX_append:
  shows "PX r (s1 @ s2) = PV r s1 (PX (ders s1 r) s2)"
  by (simp add: PV_append PX_def ders_append)

lemma code_PV0: 
  shows "PV r (c # s) v = injval r c (PV (der c r) s v)"
  unfolding PX_def PV_def
  apply(simp)
  by (simp add: flex_injval)

lemma code_PX0: 
  shows "PX r (c # s) = injval r c (PX (der c r) s)"
  unfolding PX_def
  apply(simp add: code_PV0)
  done  

lemma Prf_PV:
  assumes "\<Turnstile> v : ders s r"
  shows "\<Turnstile> PV r s v : r"
  using assms unfolding PX_def PV_def
  apply(induct s arbitrary: v r)
   apply(simp)
  apply(simp)
  by (simp add: Prf_injval flex_injval)
  

lemma Prf_PX:
  assumes "s \<in> L r"
  shows "\<Turnstile> PX r s : r"
  using assms unfolding PX_def PV_def
  using L1 LX0 Posix_Prf lexer_correct_Some by fastforce

lemma PV1: 
  assumes "\<Turnstile> v : ders s r"
  shows "(intern r) >> code (PV r s v)"
  using assms
  by (simp add: Prf_PV contains2)

lemma PX1: 
  assumes "s \<in> L r"
  shows "(intern r) >> code (PX r s)"
  using assms
  by (simp add: Prf_PX contains2)

lemma PX2: 
  assumes "s \<in> L (der c r)"
  shows "bder c (intern r) >> code (injval r c (PX (der c r) s))"
  using assms
  by (simp add: Prf_PX contains6 retrieve_code_bder)

lemma PX2a: 
  assumes "c # s \<in> L r"
  shows "bder c (intern r) >> code (injval r c (PX (der c r) s))"
  using assms
  using PX2 lexer_correct_None by force

lemma PX2b: 
  assumes "c # s \<in> L r"
  shows "bder c (intern r) >> code (PX r (c # s))"
  using assms unfolding PX_def PV_def
  by (metis Der_def L07XX PV_def PX2a PX_def Posix_determ Posix_injval der_correctness erase_intern mem_Collect_eq)
    
lemma PV3: 
  assumes "\<Turnstile> v : ders s r"
  shows "bders (intern r) s >> code (PV r s v)"
  using assms
  using PX_def PV_def contains70
  by (simp add: contains6 retrieve_code_bders)
  
lemma PX3: 
  assumes "s \<in> L r"
  shows "bders (intern r) s >> code (PX r s)"
  using assms
  using PX_def PV_def contains70 by auto


lemma PV_bders_iff:
  assumes "\<Turnstile> v : ders s r"
  shows "bders (intern r) s >> code (PV r s v) \<longleftrightarrow> (intern r) >> code (PV r s v)"
  by (simp add: PV1 PV3 assms)
  
lemma PX_bders_iff:
  assumes "s \<in> L r"
  shows "bders (intern r) s >> code (PX r s) \<longleftrightarrow> (intern r) >> code (PX r s)"
  by (simp add: PX1 PX3 assms)

lemma PX4: 
  assumes "(s1 @ s2) \<in> L r"
  shows "bders (intern r) (s1 @ s2) >> code (PX r (s1 @ s2))"
  using assms
  by (simp add: PX3)

lemma PX_bders_iff2: 
  assumes "(s1 @ s2) \<in> L r"
  shows "bders (intern r) (s1 @ s2) >> code (PX r (s1 @ s2)) \<longleftrightarrow>
         (intern r) >> code (PX r (s1 @ s2))"
  by (simp add: PX1 PX3 assms)

lemma PV_bders_iff3: 
  assumes "\<Turnstile> v : ders (s1 @ s2) r"
  shows "bders (intern r) (s1 @ s2) >> code (PV r (s1 @ s2) v) \<longleftrightarrow>
         bders (intern r) s1 >> code (PV r (s1 @ s2) v)"
  by (metis PV3 PV_append Prf_PV assms ders_append)



lemma PX_bders_iff3: 
  assumes "(s1 @ s2) \<in> L r"
  shows "bders (intern r) (s1 @ s2) >> code (PX r (s1 @ s2)) \<longleftrightarrow>
         bders (intern r) s1 >> code (PX r (s1 @ s2))"
  by (metis Ders_def L07XX PV_append PV_def PX4 PX_def Posix_Prf assms contains6 ders_append ders_correctness erase_bders erase_intern mem_Collect_eq retrieve_code_bders)

lemma PV_bder_iff: 
  assumes "\<Turnstile> v : ders (s1 @ [c]) r"
  shows "bder c (bders (intern r) s1) >> code (PV r (s1 @ [c]) v) \<longleftrightarrow>
         bders (intern r) s1 >> code (PV r (s1 @ [c]) v)"
  by (simp add: PV_bders_iff3 assms bders_snoc)
  
lemma PV_bder_IFF: 
  assumes "\<Turnstile> v : ders (s1 @ c # s2) r"
  shows "bder c (bders (intern r) s1) >> code (PV r (s1 @ c # s2) v) \<longleftrightarrow>
         bders (intern r) s1 >> code (PV r (s1 @ c # s2) v)"
  by (metis LA PV3 PV_def Prf_PV assms bders_append code_PV0 contains7 ders.simps(2) erase_bders erase_intern retrieve_code_bders)
    

lemma PX_bder_iff: 
  assumes "(s1 @ [c]) \<in> L r"
  shows "bder c (bders (intern r) s1) >> code (PX r (s1 @ [c])) \<longleftrightarrow>
         bders (intern r) s1 >> code (PX r (s1 @ [c]))"
  by (simp add: PX_bders_iff3 assms bders_snoc)

lemma PV_bder_iff2: 
  assumes "\<Turnstile> v : ders (c # s1) r"
  shows "bders (bder c (intern r)) s1 >> code (PV r (c # s1) v) \<longleftrightarrow>
         bder c (intern r) >> code (PV r (c # s1) v)"
  by (metis PV3 Prf_PV assms bders.simps(2) code_PV0 contains7 ders.simps(2) erase_intern retrieve_code)
  

lemma PX_bder_iff2: 
  assumes "(c # s1) \<in> L r"
  shows "bders (bder c (intern r)) s1 >> code (PX r (c # s1)) \<longleftrightarrow>
         bder c (intern r) >> code (PX r (c # s1))"
  using PX2b PX3 assms by force


lemma FC_id:
  shows "FC r [] v = retrieve r v"
  by (simp add: FC_def)

lemma FC_char:
  shows "FC r [c] v = retrieve r (injval (erase r) c v)"
  by (simp add: FC_def)

lemma FC_char2:
  assumes "\<Turnstile> v : der c (erase r)"
  shows "FC r [c] v = FC (bder c r) [] v"
  using assms
  by (simp add: FC_char FC_id bder_retrieve)
  

lemma FC_bders_iff:
  assumes "\<Turnstile> v : ders s (erase r)"
  shows "bders r s >> FC r s v \<longleftrightarrow> r >> FC r s v"
  unfolding FC_def
  by (simp add: assms contains8_iff)


lemma FC_bder_iff:
  assumes "\<Turnstile> v : der c (erase r)"
  shows "bder c r >> FC r [c] v \<longleftrightarrow> r >> FC r [c] v"
  apply(subst FC_bders_iff[symmetric])
   apply(simp add: assms)
  apply(simp)
  done

lemma FC_bders_iff2:
  assumes "\<Turnstile> v : ders (c # s) (erase r)"
  shows "bders r (c # s) >> FC r (c # s) v \<longleftrightarrow> bders (bder c r) s >> FC (bder c r) s v"
  apply(subst FC_bders_iff)
  using assms apply simp
  by (metis FC_def assms contains7b contains8_iff ders.simps(2) erase_bder)


lemma FC_bnullable0:
  assumes "bnullable r"
  shows "FC r [] (mkeps (erase r)) = FC (bsimp r) [] (mkeps (erase (bsimp r)))"
  unfolding FC_def 
  by (simp add: L0 assms)


lemma FC_nullable2:
  assumes "bnullable (bders a s)"
  shows "FC (bsimp a) s (mkeps (erase (bders (bsimp a) s))) = 
         FC (bders (bsimp a) s) [] (mkeps (erase (bders (bsimp a) s)))"
  unfolding FC_def
  using L02_bders assms by auto

lemma FC_nullable3:
  assumes "bnullable (bders a s)"
  shows "FC a s (mkeps (erase (bders a s))) = 
         FC (bders a s) [] (mkeps (erase (bders a s)))"
  unfolding FC_def
  using LA assms bnullable_correctness mkeps_nullable by fastforce


lemma FE_contains0:
  assumes "bnullable r"
  shows "r >> FE r []"
  by (simp add: FE_def assms bnullable_correctness contains6 mkeps_nullable)

lemma FE_contains1:
  assumes "bnullable (bders r s)"
  shows "r >> FE r s"
  by (metis FE_def Prf_flex assms bnullable_correctness contains6 erase_bders mkeps_nullable)

lemma FE_bnullable0:
  assumes "bnullable r"
  shows "FE r [] = FE (bsimp r) []"
  unfolding FE_def 
  by (simp add: L0 assms)


lemma FE_nullable1:
  assumes "bnullable (bders r s)"
  shows "FE r s = FE (bders r s) []"
  unfolding FE_def
  using LA assms bnullable_correctness mkeps_nullable by fastforce

lemma FE_contains2:
  assumes "bnullable (bders r s)"
  shows "r >> FE (bders r s) []"
  by (metis FE_contains1 FE_nullable1 assms)

lemma FE_contains3:
  assumes "bnullable (bder c r)"
  shows "r >> FE (bsimp (bder c r)) []"
  by (metis FE_def L0 assms bder_retrieve bders.simps(1) bnullable_correctness contains7a erase_bder erase_bders flex.simps(1) id_apply mkeps_nullable)

lemma FE_contains4:
  assumes "bnullable (bders r s)"
  shows "r >> FE (bsimp (bders r s)) []"
  using FE_bnullable0 FE_contains2 assms by auto
  
lemma FC4:
  assumes "\<Turnstile> v : ders s (erase a)"
  shows "FC a s v = FC (bders a s) [] v"
  unfolding FC_def by (simp add: LA assms)

lemma FC5:
  assumes "nullable (erase a)"
  shows "FC a [] (mkeps (erase a)) = FC (bsimp a) [] (mkeps (erase (bsimp a)))"
  unfolding FC_def
  using L0 assms bnullable_correctness by auto 


lemma in1:
  assumes "AALTs bsX rsX \<in> set rs"
  shows "\<forall>r \<in> set rsX. fuse bsX r \<in> set (flts rs)"
  using assms
  apply(induct rs arbitrary: bsX rsX)
   apply(auto)
  by (metis append_assoc in_set_conv_decomp k0)

lemma in2a:
  assumes "nonnested (bsimp r)" "\<not>nonalt(bsimp r)" 
  shows "(\<exists>bsX rsX. r = AALTs bsX rsX) \<or> (\<exists>bsX rX1 rX2. r = ASEQ bsX rX1 rX2 \<and> bnullable rX1)"
  using assms
  apply(induct r)
       apply(auto)
  by (metis arexp.distinct(25) b3 bnullable.simps(2) bsimp_ASEQ.simps(1) bsimp_ASEQ0 bsimp_ASEQ1 nonalt.elims(3) nonalt.simps(2))


lemma [simp]:
  shows "size (fuse bs r) = size r"
  by (induct r) (auto)

fun AALTs_subs where
  "AALTs_subs (AZERO) = {}"
| "AALTs_subs (AONE bs) = {AONE bs}"
| "AALTs_subs (ACHAR bs c) = {ACHAR bs c}"
| "AALTs_subs (ASEQ bs r1 r2) = {ASEQ bs r1 r2}"
| "AALTs_subs (ASTAR bs r) = {ASTAR bs r}"
| "AALTs_subs (AALTs bs []) = {}"
| "AALTs_subs (AALTs bs (r#rs)) = AALTs_subs (fuse bs r) \<union> AALTs_subs (AALTs bs rs)"

lemma nonalt_10:
  assumes "nonalt r" "r \<noteq> AZERO"
  shows "r \<in> AALTs_subs r"
  using assms
  apply(induct r)
       apply(auto)
  done

lemma flt_fuse:
  shows "flts (map (fuse bs) rs) = map (fuse bs) (flts rs)"
  apply(induct rs arbitrary: bs rule: flts.induct)
        apply(auto)
  by (simp add: fuse_append)

lemma AALTs_subs_fuse: 
  shows "AALTs_subs (fuse bs r) = (fuse bs) ` (AALTs_subs r)"
  apply(induct r arbitrary: bs rule: AALTs_subs.induct)
       apply(auto)
   apply (simp add: fuse_append)
  apply blast
  by (simp add: fuse_append)

lemma AALTs_subs_fuse2: 
  shows "AALTs_subs (AALTs bs rs) = AALTs_subs (AALTs [] (map (fuse bs) rs))"
  apply(induct rs arbitrary: bs)
   apply(auto)
   apply (auto simp add: fuse_empty)
  done

lemma fuse_map:
  shows "map (fuse (bs1 @ bs2)) rs = map (fuse bs1) (map (fuse bs2) rs)"
  apply(induct rs)
   apply(auto)
  using fuse_append by blast
  

 
lemma contains59_2:
  assumes "AALTs bs rs >> bs2" 
  shows "\<exists>r\<in>AALTs_subs (AALTs bs rs). r >> bs2"
  using assms
  apply(induct rs arbitrary: bs bs2 taking: "\<lambda>rs. sum_list  (map asize rs)" rule: measure_induct)
  apply(case_tac x)
  apply(auto)
  using contains59 apply force
  apply(erule contains.cases)
        apply(auto)
   apply(case_tac "r = AZERO")
    apply(simp)
    apply (metis bsimp_AALTs.simps(1) contains61 empty_iff empty_set)
   apply(case_tac "nonalt r")
  apply (metis UnCI bsimp_AALTs.simps(1) contains0 contains61 empty_iff empty_set nn11a nonalt_10)
   apply(subgoal_tac "\<exists>bsX rsX. r = AALTs bsX rsX")
    prefer 2
  using bbbbs1 apply blast
   apply(auto)
   apply (metis UnCI contains0 fuse.simps(4) less_add_Suc1)
  apply(drule_tac x="rs" in spec)
  apply(drule mp)
   apply(simp add: asize0)
  apply(drule_tac x="bsa" in spec)
  apply(drule_tac x="bsa @ bs1" in spec)
  apply(auto)
  done

lemma TEMPLATE_contains61a:
  assumes "\<exists>r \<in> set rs. (fuse bs r) >> bs2"
  shows "bsimp_AALTs bs rs >> bs2" 
  using assms
  apply(induct rs arbitrary: bs2 bs)
   apply(auto)
   apply (metis bsimp_AALTs.elims contains60 list.distinct(1) list.inject list.set_intros(1))
  by (metis append_Cons append_Nil contains50 f_cont2)




lemma H1:
  assumes "r >> bs2" "r \<in> AALTs_subs a" 
  shows "a >> bs2"
  using assms
  apply(induct a arbitrary: r bs2 rule: AALTs_subs.induct)
        apply(auto)
   apply (simp add: contains60)
  by (simp add: contains59 contains60)

lemma H3:
  assumes "a >> bs"
  shows "\<exists>r \<in> AALTs_subs a. r >> bs"
  using assms
  apply(induct a bs)
        apply(auto intro: contains.intros)
  using contains.intros(4) contains59_2 by fastforce

lemma H4:
  shows "AALTs_subs (AALTs bs rs1) \<subseteq> AALTs_subs (AALTs bs (rs1 @ rs2))"
  apply(induct rs1)
   apply(auto)
  done

lemma H5:
  shows "AALTs_subs (AALTs bs rs2) \<subseteq> AALTs_subs (AALTs bs (rs1 @ rs2))"
  apply(induct rs1)
   apply(auto)
  done

lemma H7:
  shows "AALTs_subs (AALTs bs (rs1 @ rs2)) = AALTs_subs (AALTs bs rs1) \<union> AALTs_subs (AALTs bs rs2)"
  apply(induct rs1)
   apply(auto)
  done

lemma H10:
  shows "AALTs_subs (AALTs bs rs) = (\<Union>r \<in> set rs. AALTs_subs (fuse bs r))"
  apply(induct rs arbitrary: bs)
   apply(auto)
  done

lemma H6:
  shows "AALTs_subs (AALTs bs (flts rs)) = AALTs_subs (AALTs bs rs)"
  apply(induct rs arbitrary: bs rule: flts.induct)
        apply(auto)
  apply (metis AALTs_subs_fuse2 H7 Un_iff fuse_map)
  apply (metis AALTs_subs_fuse2 H7 UnCI fuse_map)
  by (simp add: H7)



lemma H2:
  assumes "r >> bs2" "r \<in> AALTs_subs (AALTs bs rs)" 
  shows "r \<in> AALTs_subs (AALTs bs (flts rs))"
  using assms
  apply(induct rs arbitrary: r bs bs2 rule: flts.induct)
        apply(auto)
   apply (metis AALTs_subs_fuse2 H4 fuse_map in_mono)
  using H7 by blast
  
lemma HH1:
  assumes "r \<in> AALTs_subs (fuse bs a)" "r >> bs2"
  shows "\<exists>bs3. bs2 = bs @ bs3"
  using assms
  using H1 f_cont1 by blast

lemma fuse_inj:
  assumes "fuse bs a = fuse bs b"
  shows "a = b"
  using assms
  apply(induct a arbitrary: bs b)
       apply(auto)
       apply(case_tac b)
            apply(auto)
         apply(case_tac b)
           apply(auto)
       apply(case_tac b)
          apply(auto)
       apply(case_tac b)
         apply(auto)
       apply(case_tac b)
        apply(auto)
         apply(case_tac b)
       apply(auto)
  done

lemma HH11:
  assumes "r \<in> AALTs_subs (fuse bs1 a)"
  shows "fuse bs r \<in> AALTs_subs (fuse (bs @ bs1) a)"
  using assms
  apply(induct a arbitrary: r bs bs1)
       apply(auto)
  apply(subst (asm) H10)
  apply(auto)
  apply(drule_tac x="x" in meta_spec)
  apply(simp)
  apply(drule_tac x="r" in meta_spec)
  apply(drule_tac x="bs" in meta_spec)
  apply(drule_tac x="bs1 @ x1" in meta_spec)
  apply(simp)
  apply(subst H10)
  apply(auto)
  done

lemma HH12:
  assumes "r \<in> AALTs_subs a"
  shows "fuse bs r \<in> AALTs_subs (fuse bs a)"
  using AALTs_subs_fuse assms by blast

lemma HH13:
  assumes "r \<in> (\<Union>r \<in> set rs. AALTs_subs r)"
  shows "fuse bs r \<in> AALTs_subs (AALTs bs rs)"
  using assms
  using H10 HH12 by blast
  

lemma contains61a_2:
  assumes "\<exists>r\<in>AALTs_subs (AALTs bs rs). r >> bs2" 
  shows "bsimp_AALTs bs rs >> bs2" 
  using assms
 apply(induct rs arbitrary: bs2 bs)
   apply(auto)
  apply (simp add: H1 TEMPLATE_contains61a)
  by (metis append_Cons append_Nil contains50 f_cont2)

lemma contains_equiv_def2:
  shows " (AALTs bs as >> bs@bs1) \<longleftrightarrow> (\<exists>a\<in>(\<Union> (AALTs_subs ` set as)). a >> bs1)"
  by (metis H1 H3 UN_E UN_I contains0 contains49 contains59 contains60)
    
lemma contains_equiv_def:
  shows "(AALTs bs as >> bs@bs1) \<longleftrightarrow> (\<exists>a\<in>set as. a >> bs1)"
  by (meson contains0 contains49 contains59 contains60)

lemma map_fuse2:
  shows "map (bder c) (map (fuse bs) as) = map (fuse bs) (map (bder c) as)"
  by (simp add: map_bder_fuse)

lemma map_fuse3:
  shows "map (\<lambda>a. bders a s) (map (fuse bs) as) = map (fuse bs) (map (\<lambda>a. bders a s) as)"
  apply(induct s arbitrary: bs as rule: rev_induct)
   apply(auto simp add: bders_append map_fuse2)
  using bder_fuse by blast

lemma bders_AALTs:
  shows "bders (AALTs bs2 as) s = AALTs bs2 (map (\<lambda>a. bders a s) as)"
  apply(induct s arbitrary: bs2 as rule: rev_induct)
  apply(auto simp add: bders_append)
  done

lemma bders_AALTs_contains:
  shows "bders (AALTs bs2 as) s >> bs2 @ bs \<longleftrightarrow> 
         AALTs bs2 (map (\<lambda>a. bders a s) as) >> bs2 @ bs"
  apply(induct s arbitrary: bs bs2 as)
   apply(auto)[1]
  apply(simp)
  by (smt comp_apply map_eq_conv)


lemma derc_alt00_Urb:
  shows "bder c (bsimp_AALTs bs2 (flts [bsimp a])) >> bs2 @ bs \<longleftrightarrow>
         fuse bs2 (bder c (bsimp a)) >> bs2 @ bs"
  apply(case_tac "bsimp a")
  apply(auto)
  apply(subst (asm) bder_bsimp_AALTs)
   apply(subst (asm) map_fuse2)
  using contains60 contains61 contains63 apply blast
  by (metis bder_bsimp_AALTs contains51c map_bder_fuse map_map)

lemma ders_alt00_Urb:
  shows "bders (bsimp_AALTs bs2 (flts [bsimp a])) s >> bs2 @ bs \<longleftrightarrow>
         fuse bs2 (bders (bsimp a) s) >> bs2 @ bs"
      apply(case_tac "bsimp a")
             apply (simp add: bders_AZERO(1))
  using bders_fuse bsimp_AALTs.simps(2) flts.simps(1) flts.simps(4) apply presburger
  using bders_fuse bsimp_AALTs.simps(2) flts.simps(1) flts.simps(5) apply presburger
  using bders_fuse bsimp_AALTs.simps(2) flts.simps(1) flts.simps(6) apply presburger
   prefer 2
  using bders_fuse bsimp_AALTs.simps(2) flts.simps(1) flts.simps(7) apply presburger
  apply(auto simp add: bders_bsimp_AALTs)
   apply(drule contains61)
   apply(auto simp add: bders_AALTs) 
   apply(rule contains63)
   apply(rule contains60)
   apply(auto)
  using bders_fuse apply auto[1]
  by (metis contains51c map_fuse3 map_map)
    
lemma derc_alt00_Urb2a:
  shows "bder c (bsimp_AALTs bs2 (flts [bsimp a])) >> bs2 @ bs \<longleftrightarrow>
         bder c (bsimp a) >> bs"
  using contains0 contains49 derc_alt00_Urb by blast


lemma derc_alt00_Urb2:
  assumes "fuse bs2 (bder c (bsimp a)) >> bs2 @ bs" "a \<in> set as"
  shows "bder c (bsimp_AALTs bs2 (flts (map bsimp as))) >> bs2 @ bs"
  using assms
  apply(subgoal_tac "\<exists>list1 list2. as = list1 @ [a] @ list2")
   prefer 2
  using split_list_last apply fastforce
  apply(erule exE)+
  apply(simp add: flts_append del: append.simps)
  using bder_bsimp_AALTs contains50 contains51b derc_alt00_Urb by auto

lemma ders_alt00_Urb2:
  assumes "fuse bs2 (bders (bsimp a) s) >> bs2 @ bs" "a \<in> set as"
  shows "bders (bsimp_AALTs bs2 (flts (map bsimp as))) s >> bs2 @ bs"
  using assms
  apply(subgoal_tac "\<exists>list1 list2. as = list1 @ [a] @ list2")
   prefer 2
  using split_list_last apply fastforce
  apply(erule exE)+
  apply(simp add: flts_append del: append.simps)
  apply(simp add: bders_bsimp_AALTs)
  apply(rule contains50)
  apply(rule contains51b)
  using bders_bsimp_AALTs ders_alt00_Urb by auto


lemma derc_alt2:
  assumes "bder c (AALTs bs2 as) >> bs2 @ bs" 
   and "\<forall>a \<in> set as. ((bder c a >> bs) \<longrightarrow> (bder c (bsimp a) >> bs))"
 shows "bder c (bsimp (AALTs bs2 as)) >> bs2 @ bs"
  using assms
  apply -
  apply(simp)
  apply(subst (asm) contains_equiv_def)
  apply(simp)
  apply(erule bexE)
  using contains0 derc_alt00_Urb2 by blast



lemma ders_alt2:
  assumes "bders (AALTs bs2 as) s >> bs2 @ bs" 
   and "\<forall>a \<in> set as. ((bders a s >> bs) \<longrightarrow> (bders (bsimp a) s >> bs))"
 shows "bders (bsimp (AALTs bs2 as)) s >> bs2 @ bs"
  using assms
  apply -
  apply(simp add: bders_AALTs)
  thm contains_equiv_def
  apply(subst (asm) contains_equiv_def)
  apply(simp)
  apply(erule bexE)
  using contains0 ders_alt00_Urb2 by blast




lemma bder_simp_contains:
  assumes "bder c a >> bs"
  shows "bder c (bsimp a) >> bs"
  using assms
  apply(induct a arbitrary: c bs)
       apply(auto elim: contains.cases)
   apply(case_tac "bnullable a1")
    apply(simp)
  prefer 2
    apply(simp)
    apply(erule contains.cases)
          apply(auto)
    apply(case_tac "(bsimp a1) = AZERO")
     apply(simp)
     apply (metis append_Nil2 contains0 contains49 fuse.simps(1))
   apply(case_tac "(bsimp a2a) = AZERO")
     apply(simp)
  apply (metis bder.simps(1) bsimp.simps(1) bsimp_ASEQ0 contains.intros(3) contains55)
    apply(case_tac "\<exists>bsX. (bsimp a1) = AONE bsX")
     apply(auto)[1]
  using b3 apply fastforce
    apply(subst bsimp_ASEQ1)
  apply(auto)[3]
    apply(simp)
    apply(subgoal_tac  "\<not> bnullable (bsimp a1)")
     prefer 2
  using b3 apply blast
    apply(simp)
    apply (simp add: contains.intros(3) contains55)
  (* SEQ nullable case *)
   apply(erule contains.cases)
         apply(auto)
   apply(erule contains.cases)
          apply(auto)
   apply(case_tac "(bsimp a1) = AZERO")
     apply(simp)
     apply (metis append_Nil2 contains0 contains49 fuse.simps(1))
   apply(case_tac "(bsimp a2a) = AZERO")
     apply(simp)
  apply (metis bder.simps(1) bsimp.simps(1) bsimp_ASEQ0 contains.intros(3) contains55)
    apply(case_tac "\<exists>bsX. (bsimp a1) = AONE bsX")
     apply(auto)[1]
  using contains.simps apply blast
    apply(subst bsimp_ASEQ1)
  apply(auto)[3]
    apply(simp)
  apply(subgoal_tac  "bnullable (bsimp a1)")
     prefer 2
  using b3 apply blast
    apply(simp)
  apply (metis contains.intros(3) contains.intros(4) contains55 self_append_conv2)
   apply(erule contains.cases)
         apply(auto)
  apply(case_tac "(bsimp a1) = AZERO")
     apply(simp)
  using b3 apply force
   apply(case_tac "(bsimp a2) = AZERO")
     apply(simp)
  apply (metis bder.simps(1) bsimp_ASEQ0 bsimp_ASEQ_fuse contains0 contains49 f_cont1)    
  apply(case_tac "\<exists>bsX. (bsimp a1) = AONE bsX")
     apply(auto)[1]
  apply (metis append_assoc bder_fuse bmkeps.simps(1) bmkeps_simp bsimp_ASEQ2 contains0 contains49 f_cont1)
   apply(subst bsimp_ASEQ1)
       apply(auto)[3]
    apply(simp)
   apply(subgoal_tac  "bnullable (bsimp a1)")
     prefer 2
  using b3 apply blast
    apply(simp)
  apply (metis bmkeps_simp contains.intros(4) contains.intros(5) contains0 contains49 f_cont1)
       apply(erule contains.cases)
         apply(auto)
  (* ALT case *)
  apply(subgoal_tac "\<exists>bsX. bs = x1 @ bsX")
  prefer 2
  using contains59 f_cont1 apply blast
  apply(auto)
  apply(rule derc_alt2[simplified])
   apply(simp)
  by blast

  

lemma bder_simp_containsA:
  assumes "bder c a >> bs"
  shows "bsimp (bder c (bsimp a)) >> bs"
  using assms
  by (simp add: bder_simp_contains contains55)

lemma bder_simp_containsB:
  assumes "bsimp (bder c a) >> bs"
  shows "bder c (bsimp a) >> bs"
  using assms
  by (simp add: PPP1_eq bder_simp_contains)
    
lemma bder_simp_contains_IFF:
  assumes "good a"
  shows "bsimp (bder c a) >> bs \<longleftrightarrow> bder c (bsimp a) >> bs"
  using assms
  by (simp add: PPP1_eq test2)  


lemma ders_seq:
  assumes "bders (ASEQ bs a1 a2) s >> bs @ bs2"
  and "\<And>s bs. bders a1 s >> bs \<Longrightarrow> bders (bsimp a1) s >> bs"
      "\<And>s bs. bders a2 s >> bs \<Longrightarrow> bders (bsimp a2) s >> bs"
    shows "bders (ASEQ bs (bsimp a1) (bsimp a2)) s >> bs @ bs2"
  using assms(1)  
  apply(induct s arbitrary: a1 a2 bs bs2 rule: rev_induct)
   apply(auto)[1]
  thm CT1_SEQ PPP1_eq
  apply (metis CT1_SEQ PPP1_eq)
  apply(auto simp add: bders_append)  
  apply(drule bder_simp_contains)
  oops


lemma bders_simp_contains:
  assumes "bders a s >> bs"
  shows "bders (bsimp a) s >> bs"
 using assms
  apply(induct a arbitrary: s bs)
       apply(auto elim: contains.cases)[4]
   prefer 2  
   apply(subgoal_tac "\<exists>bsX. bs = x1 @ bsX")
    prefer 2
  apply (metis bders_AALTs contains59 f_cont1)
  apply(clarify)
  apply(rule ders_alt2)
    apply(assumption)
   apply(auto)[1]
  prefer 2
  apply simp
  (* SEQ case *)
  apply(case_tac "bsimp a1 = AZERO")
  apply(simp)
  apply (metis LLLL(1) bders_AZERO(1) bsimp.simps(1) bsimp.simps(3) bsimp_ASEQ.simps(1) contains55 ders_correctness erase_bders good.simps(1) good1a xxx_bder2)
    apply(case_tac "bsimp a2 = AZERO")
  apply(simp)
  apply (metis LLLL(1) bders_AZERO(1) bsimp.simps(1) bsimp.simps(3) bsimp_ASEQ0 contains55 ders_correctness erase_bders good.simps(1) good1a xxx_bder2)
  apply(case_tac "\<exists>bsX. bsimp a1 = AONE bsX")
  apply(auto)
  apply(subst bsimp_ASEQ2)
  apply(case_tac s)
   apply(simp)
   apply (metis b1 bsimp.simps(1) contains55)
  apply(simp)
   apply(subgoal_tac "bnullable a1")
    prefer 2
  using b3 apply fastforce
  apply(auto)
   apply(subst (asm) bders_AALTs)
  apply(erule contains.cases)
             apply(auto)
  prefer 2
  apply(erule contains.cases)
          apply(auto)
  apply(simp add: fuse_append)
     apply(simp add: bder_fuse bders_fuse)
apply (metis bders.simps(2) bmkeps.simps(1) bmkeps_simp contains0 contains49 f_cont1)
  using contains_equiv_def apply auto[1]
   apply(simp add: bder_fuse bders_fuse fuse_append)
   apply(rule contains0)
  oops
  
  
lemma T0:
  assumes "s = []"
  shows "bders (bsimp r) s >> bs \<longleftrightarrow> bders r s >> bs"
  using assms
  by (simp add: PPP1_eq test2)  

lemma T1:
  assumes "s = [a]" "bders r s >> bs"
  shows "bders (bsimp r) s >> bs"
  using assms
  apply(simp)
  by (simp add: bder_simp_contains)

lemma TX:
  assumes "\<Turnstile> v : ders s (erase r)" "\<Turnstile> v : ders s (erase (bsimp r))"
  shows "bders r s >>  FC r s v \<longleftrightarrow> bders (bsimp r) s >> FC (bsimp r) s v"
  using FC_def contains7b 
  using assms by metis

lemma mkeps1:
  assumes "s \<in> L (erase r)"
  shows "\<Turnstile> mkeps (ders s (erase r)) : ders s (erase r)"
  using assms
  by (meson lexer_correct_None lexer_flex mkeps_nullable)
  
lemma mkeps2:
  assumes "s \<in> L (erase r)"
  shows "\<Turnstile> mkeps (ders s (erase (bsimp r))) : ders s (erase (bsimp r))"
  using assms
  by (metis LLLL(1) lexer_correct_None lexer_flex mkeps_nullable)

thm FC_def FE_def PX_def PV_def


lemma TX2:
  assumes "s \<in> L (erase r)"
  shows "bders r s >>  FE r s \<longleftrightarrow> bders (bsimp r) s >> FE (bsimp r) s"
  using assms
  by (simp add: FE_def contains7b mkeps1 mkeps2)

lemma TX3:
  assumes "s \<in> L (erase r)"
  shows "bders r s >>  FE r s \<longleftrightarrow> bders (bsimp r) s >> FE (bders (bsimp r) s) []"
  using assms
  by (metis FE_PX FE_def L07 LLLL(1) PX_id TX2)
  
find_theorems "FE _ _ = _"
find_theorems "FC _ _ _ = _"
find_theorems "(bder _ _ >> _ _ _ _) = _"


(* HERE *)

lemma PX:
  assumes "s \<in> L r" "bders (intern r) s >> code (PX r s)"
  shows "bders (bsimp (intern r)) s >> code (PX r s)"
  using assms
  apply(induct s arbitrary: r rule: rev_induct)
   apply(simp)
   apply (simp add: PPP1_eq)
  apply (simp add: bders_append bders_simp_append)
  thm PX_bder_iff PX_bders_iff
  apply(subst (asm) PX_bder_iff)
   apply(assumption)
  apply(subst (asm) (2) PX_bders_iff)
  find_theorems "_ >> code (PX _ _)"
  find_theorems "PX _ _ = _"
  find_theorems "(intern _) >> _"
  apply (simp add: contains55)  
  apply (simp add: bders_append bders_simp_append)
   apply (simp add: PPP1_eq)
  find_theorems "(bder _ _ >> _) = _"
  apply(rule contains50)
  
  apply(case_tac "bders a xs = AZERO")
   apply(simp)
   apply(subgoal_tac "bders_simp a xs = AZERO")
    prefer 2
  apply (metis L_bders_simp XXX4a_good_cons bders.simps(1) bders_simp.simps(1) bsimp.simps(3) good.simps(1) good1a test2 xxx_bder2)
   apply(simp)
  apply(case_tac xs)
  apply(simp)
  apply (simp add: PPP1_eq)
  apply(simp)
  apply(subgoal_tac "good (bders_simp a (aa # list)) \<or> (bders_simp a (aa # list) = AZERO)")
  apply(auto)
      apply(subst (asm) bder_simp_contains_IFF)
       apply(simp)
  
(* TOBE PROVED *)
lemma
  assumes "s \<in> L (erase r)"
  shows "bders_simp r s >> bs \<longleftrightarrow> bders r s >> bs"
  using assms
  apply(induct s arbitrary: r bs)
   apply(simp)
  apply(simp add: bders_append bders_simp_append)
  apply(rule iffI)
   apply(drule_tac x="bsimp (bder a r)" in meta_spec)
  apply(drule_tac x="bs" in meta_spec)
   apply(drule meta_mp)
  using L_bsimp_erase lexer_correct_None apply fastforce
  apply(simp)
    
  
   prefer 2
  

  oops


lemma
  assumes "s \<in> L r"
  shows "(bders_simp (intern r) s >> code (PX r s)) \<longleftrightarrow> ((intern r) >> code (PX r s))"
  using assms
  apply(induct s arbitrary: r rule: rev_induct)
   apply(simp)
  apply(simp add: bders_simp_append)
  apply(simp add: PPP1_eq)
  
  
find_theorems "retrieve (bders _ _) _"
find_theorems "_ >> retrieve _ _"
find_theorems "bsimp _ >> _"
  oops


lemma PX4a: 
  assumes "(s1 @ s2) \<in> L r"
  shows "bders (intern r) (s1 @ s2) >> code (PV r s1 (PX (ders s1 r) s2))"
  using PX4[OF assms]
  apply(simp add: PX_append)
  done

lemma PV5: 
  assumes "s2 \<in> (ders s1 r) \<rightarrow> v"
  shows "bders (intern r) (s1 @ s2) >> code (PV r s1 v)"
  by (simp add: PPP0_isar PV_def Posix_flex assms)

lemma PV6: 
  assumes "s2 \<in> (ders s1 r) \<rightarrow> v"
  shows "bders (bders (intern r) s1) s2 >> code (PV r s1 v)"
  using PV5 assms bders_append by auto

find_theorems "retrieve (bders _ _) _"
find_theorems "_ >> retrieve _ _"
find_theorems "bder _ _ >> _"


lemma OO0_PX:
  assumes "s \<in> L r"
  shows "bders (intern r) s >> code (PX r s)"
  using assms
  by (simp add: PX3)
  

lemma OO1:
  assumes "[c] \<in> r \<rightarrow> v"
  shows "bder c (intern r) >> code v"
  using assms
  using PPP0_isar by force

lemma OO1a:
  assumes "[c] \<in> L r"
  shows "bder c (intern r) >> code (PX r [c])"
  using assms unfolding PX_def PV_def
  using contains70 by fastforce
  
lemma OO12:
  assumes "[c1, c2] \<in> L r"
  shows "bders (intern r) [c1, c2] >> code (PX r [c1, c2])"
  using assms
  using PX_def PV_def contains70 by presburger

lemma OO2:
  assumes "[c] \<in> L r"
  shows "bders_simp (intern r) [c] >> code (PX r [c])"
  using assms
  using OO1a Posix1(1) contains55 by auto
  

thm L07XX PPP0b erase_intern

find_theorems "retrieve (bders _ _) _"
find_theorems "_ >> retrieve _ _"
find_theorems "bder _ _ >> _"


lemma PPP3:
  assumes "\<Turnstile> v : ders s (erase a)"
  shows "bders a s >> retrieve a (flex (erase a) id s v)"
  using LA[OF assms] contains6 erase_bders assms by metis


find_theorems "bder _ _ >> _"


lemma
  fixes n :: nat
  shows "(\<Sum>i \<in> {0..n}. i) = n * (n + 1) div 2"
  apply(induct n)
  apply(simp)
  apply(simp)
  done

lemma COUNTEREXAMPLE:
  assumes "r = AALTs [S] [ASEQ [S] (AALTs [S] [AONE [S], ACHAR [S] c]) (ACHAR [S] c)]"
  shows "bsimp (bder c (bsimp r)) = bsimp (bder c r)"
  apply(simp_all add: assms)
  oops

lemma COUNTEREXAMPLE:
  assumes "r = AALTs [S] [ASEQ [S] (AALTs [S] [AONE [S], ACHAR [S] c]) (ACHAR [S] c)]"
  shows "bsimp r = r"
  apply(simp_all add: assms)
  oops

lemma COUNTEREXAMPLE:
  assumes "r = AALTs [S] [ASEQ [S] (AALTs [S] [AONE [S], ACHAR [S] c]) (ACHAR [S] c)]"
  shows "bsimp r = XXX"
  and   "bder c r = XXX"
  and   "bder c (bsimp r) = XXX"
  and   "bsimp (bder c (bsimp r)) = XXX"
  and   "bsimp (bder c r) = XXX"
  apply(simp_all add: assms)
  oops

lemma COUNTEREXAMPLE_contains1:
  assumes "r = AALTs [S] [ASEQ [S] (AALTs [S] [AONE [S], ACHAR [S] c]) (ACHAR [S] c)]"
  and   "bsimp (bder c r) >> bs"
  shows "bsimp (bder c (bsimp r)) >> bs"
  using assms 
  apply(auto elim!: contains.cases)
   apply(rule Etrans)
    apply(rule contains.intros)
    apply(rule contains.intros)
   apply(simp)
  apply(rule Etrans)
    apply(rule contains.intros)
    apply(rule contains.intros)
  apply(simp)
  done

lemma COUNTEREXAMPLE_contains2:
  assumes "r = AALTs [S] [ASEQ [S] (AALTs [S] [AONE [S], ACHAR [S] c]) (ACHAR [S] c)]"
  and   "bsimp (bder c (bsimp r)) >> bs"
  shows "bsimp (bder c r) >> bs" 
  using assms 
  apply(auto elim!: contains.cases)
   apply(rule Etrans)
    apply(rule contains.intros)
    apply(rule contains.intros)
   apply(simp)
  apply(rule Etrans)
    apply(rule contains.intros)
    apply(rule contains.intros)
  apply(simp)
  done


end