// A simple lexer inspired by work of Sulzmann & Lu
//==================================================
//
// Call the test cases with
//
// amm lexer.sc small
// amm lexer.sc fib
// amm lexer.sc loops
// amm lexer.sc email
//
// amm lexer.sc all
// regular expressions including records
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case object ANYCHAR extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTS(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
case class NTIMES(n: Int, r: Rexp) extends Rexp
case class OPTIONAL(r: Rexp) extends Rexp
case class NOT(r: Rexp) extends Rexp
// records for extracting strings or tokens
// values
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
case class Ntime(vs: List[Val]) extends Val
case class Optionall(v: Val) extends Val
case class Nots(s: String) extends Val
abstract class Bit
case object Z extends Bit
case object S extends Bit
type Bits = List[Bit]
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
case class ACHAR(bs: Bits, c: Char) extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: Bits, r: ARexp) extends ARexp
case class ANOT(bs: Bits, r: ARexp) extends ARexp
case class AANYCHAR(bs: Bits) extends ARexp
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp =
charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALTS(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALTS(s, r)
def | (r: String) = ALTS(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
def nullable(r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ANYCHAR => false
case ALTS(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r1) => nullable(r1)
case NTIMES(n, r) => if (n == 0) true else nullable(r)
case OPTIONAL(r) => true
case NOT(r) => !nullable(r)
}
def der(c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ANYCHAR => ONE
case ALTS(r1, r2) => ALTS(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALTS(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
case NTIMES(n, r) => if(n > 0) SEQ(der(c, r), NTIMES(n - 1, r)) else ZERO
case OPTIONAL(r) => der(c, r)
case NOT(r) => NOT(der(c, r))
}
// extracts a string from a value
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) ++ flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Ntime(vs) => vs.map(flatten).mkString
case Optionall(v) => flatten(v)
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value;
// used for tokenising a string
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Ntime(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
case Optionall(v) => env(v)
case Nots(s) => ("Negative", s) :: Nil
}
// The injection and mkeps part of the lexer
//===========================================
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALTS(r1, r2) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
case NTIMES(n, r) => Ntime(List.fill(n)(mkeps(r)))
case OPTIONAL(r) => Optionall(Empty)
case NOT(rInner) => if(nullable(rInner)) throw new Exception("error")
else Nots("")//Nots(s.reverse.toString)
// case NOT(ZERO) => Empty
// case NOT(CHAR(c)) => Empty
// case NOT(SEQ(r1, r2)) => Sequ(mkeps(NOT(r1)), mkeps(NOT(r2)))
// case NOT(ALTS(r1, r2)) => if(!nullable(r1)) Left(mkeps(NOT(r1))) else Right(mkeps(NOT(r2)))
// case NOT(STAR(r)) => Stars(Nil)
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
case (ALTS(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
case (CHAR(d), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
case (NTIMES(n, r), Sequ(v1, Ntime(vs))) => Ntime(inj(r, c, v1)::vs)
case (OPTIONAL(r), v) => Optionall(inj(r, c, v))
case (NOT(r), Nots(s)) => Nots(c.toString ++ s)
case (ANYCHAR, Empty) => Chr(c)
}
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALTS(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALTS (r1s, r2s), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case r => (r, F_ID)
}
// lexing functions including simplification
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else
{ throw new Exception(s"lexing error $r not nullable") }
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) =
env(lex_simp(r, s.toList))
// The Lexing Rules for the WHILE Language
def PLUS(r: Rexp) = r ~ r.%
def Range(s : List[Char]) : Rexp = s match {
case Nil => ZERO
case c::Nil => CHAR(c)
case c::s => ALTS(CHAR(c), Range(s))
}
def RANGE(s: String) = Range(s.toList)
val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_")
val DIGIT = RANGE("0123456789")
val ID = SYM ~ (SYM | DIGIT).%
val NUM = PLUS(DIGIT)
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write"
val SEMI: Rexp = ";"
val OP: Rexp = ":=" | "=" | "-" | "+" | "*" | "!=" | "<" | ">"
val WHITESPACE = PLUS(" " | "\n" | "\t" | "\r")
val RPAREN: Rexp = "{"
val LPAREN: Rexp = "}"
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
//ab \ a --> 1b
//
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("w" $ WHITESPACE)).%
val NREGS = NTIMES(5, OPTIONAL(SYM))
val NREGS1 = ("test" $ NREGS)
// Two Simple While Tests
//========================
val NOTREG = "hehe" ~ NOT((ANYCHAR.%) ~ "haha" ~ (ANYCHAR.%))
// bnullable function: tests whether the aregular
// expression can recognise the empty string
def bnullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
case ACHAR(_,_) => false
case AALTS(_, rs) => rs.exists(bnullable)
case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
case ASTAR(_, _) => true
case ANOT(_, rn) => !bnullable(rn)
}
def mkepsBC(r: ARexp) : Bits = r match {
case AONE(bs) => bs
case AALTS(bs, rs) => {
val n = rs.indexWhere(bnullable)
bs ++ mkepsBC(rs(n))
}
case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
case ASTAR(bs, r) => bs ++ List(Z)
case ANOT(bs, rn) => bs
}
def bder(c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
case ACHAR(bs, f) => if (c == f) AONE(bs) else AZERO
case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
case ASEQ(bs, r1, r2) =>
if (bnullable(r1)) AALTS(bs, ASEQ(Nil, bder(c, r1), r2) :: fuse(mkepsBC(r1), bder(c, r2)) :: Nil )
else ASEQ(bs, bder(c, r1), r2)
case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
case ANOT(bs, rn) => ANOT(bs, bder(c, rn))
case AANYCHAR(bs) => AONE(bs)
}
def fuse(bs: Bits, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
case ACHAR(cs, f) => ACHAR(bs ++ cs, f)
case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
case ANOT(cs, r) => ANOT(bs ++ cs, r)
}
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
case CHAR(c) => ACHAR(Nil, c)
//case PRED(f) => APRED(Nil, f)
case ALTS(r1, r2) =>
AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
// case ALTS(r1::rs) => {
// val AALTS(Nil, rs2) = internalise(ALTS(rs))
// AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
// }
case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
case STAR(r) => ASTAR(Nil, internalise(r))
case RECD(x, r) => internalise(r)
case NOT(r) => ANOT(Nil, internalise(r))
case ANYCHAR => AANYCHAR(Nil)
}
def bsimp(r: ARexp): ARexp =
{
r match {
case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
val rs_simp = rs.map(bsimp(_))
val flat_res = flats(rs_simp)
val dist_res = strongDistinctBy(flat_res)//distinctBy(flat_res, erase)
dist_res match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)
}
}
case r => r
}
}
def bders (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders(s, bder(c, r))
}
def flats(rs: List[ARexp]): List[ARexp] = rs match {
case Nil => Nil
case AZERO :: rs1 => flats(rs1)
case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
case r1 :: rs2 => r1 :: flats(rs2)
}
def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
case Nil => Nil
case (x::xs) => {
val res = f(x)
if (acc.contains(res)) distinctBy(xs, f, acc)
else x::distinctBy(xs, f, res::acc)
}
}
def prettyRexp(r: Rexp) : String = r match {
case STAR(r0) => s"${prettyRexp(r0)}*"
case SEQ(CHAR(c), r2) => c.toString ++ prettyRexp(r2)
case SEQ(r1, r2) => s"${prettyRexp(r1)}~${prettyRexp(r2)}"
case CHAR(c) => c.toString
case ANYCHAR => "."
// case NOT(r0) => s
}
def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
case (CHAR(f), bs) => (Chr(f), bs)
case (ALTS(r1, r2), Z::bs1) => {
val (v, bs2) = decode_aux(r1, bs1)
(Left(v), bs2)
}
case (ALTS(r1, r2), S::bs1) => {
val (v, bs2) = decode_aux(r2, bs1)
(Right(v), bs2)
}
case (SEQ(r1, r2), bs) => {
val (v1, bs1) = decode_aux(r1, bs)
val (v2, bs2) = decode_aux(r2, bs1)
(Sequ(v1, v2), bs2)
}
case (STAR(r1), S::bs) => {
val (v, bs1) = decode_aux(r1, bs)
//println(v)
val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
(Stars(v::vs), bs2)
}
case (STAR(_), Z::bs) => (Stars(Nil), bs)
case (RECD(x, r1), bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Rec(x, v), bs1)
}
case (NOT(r), bs) => (Nots(prettyRexp(r)), bs)
}
def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
case (v, Nil) => v
case _ => throw new Exception("Not decodable")
}
def blexSimp(r: Rexp, s: String) : List[Bit] = {
blex_simp(internalise(r), s.toList)
}
def blexing_simp(r: Rexp, s: String) : Val = {
val bit_code = blex_simp(internalise(r), s.toList)
decode(r, bit_code)
}
def bders_simp(s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders_simp(s, bsimp(bder(c, r)))
}
def bdersSimp(s: String, r: Rexp) : ARexp = bders_simp(s.toList, internalise(r))
def erase(r:ARexp): Rexp = r match{
case AZERO => ZERO
case AONE(_) => ONE
case ACHAR(bs, c) => CHAR(c)
case AALTS(bs, Nil) => ZERO
case AALTS(bs, a::Nil) => erase(a)
case AALTS(bs, a::as) => ALTS(erase(a), erase(AALTS(bs, as)))
case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
case ASTAR(cs, r)=> STAR(erase(r))
case ANOT(bs, r) => NOT(erase(r))
case AANYCHAR(bs) => ANYCHAR
}
def breakHead(r: ARexp) : List[ARexp] = r match {
case AALTS(bs, rs) => rs
case r => r::Nil
}
def distinctByWithAcc[B, C](xs: List[B], f: B => C,
acc: List[C] = Nil, accB: List[B] = Nil): (List[B], List[C]) = xs match {
case Nil => (accB.reverse, acc)
case (x::xs) => {
val res = f(x)
if (acc.contains(res)) distinctByWithAcc(xs, f, acc, accB)
else distinctByWithAcc(xs, f, res::acc, x::accB)
}
}
def strongDistinctBy(xs: List[ARexp],
acc1: List[Rexp] = Nil,
acc2 : List[(List[Rexp], Rexp)] = Nil): List[ARexp] = xs match {
case Nil => Nil
case (x::xs) =>
if(acc1.contains(erase(x)))
strongDistinctBy(xs, acc1, acc2)
else{
x match {
case ASTAR(bs0, r0) =>
val headList : List[ARexp] = List[ARexp](AONE(Nil))
val i = acc2.indexWhere(
r2stl => {val (r2s, tl) = r2stl; tl == erase(r0) }
)
if(i == -1){
x::strongDistinctBy(
xs, erase(x)::acc1, (ONE::Nil, erase(r0))::acc2
)
}
else{
val headListAlready = acc2(i)
val (newHeads, oldHeadsUpdated) =
distinctByWithAcc(headList, erase, headListAlready._1)
newHeads match{
case newHead::Nil =>
ASTAR(bs0, r0) ::
strongDistinctBy(xs, erase(x)::acc1,
acc2.updated(i, (oldHeadsUpdated, headListAlready._2)) )//TODO: acc2 already contains headListAlready
case Nil =>
strongDistinctBy(xs, erase(x)::acc1,
acc2)
}
}
case ASEQ(bs, r1, ASTAR(bs0, r0)) =>
val headList = breakHead(r1)
val i = acc2.indexWhere(
r2stl => {val (r2s, tl) = r2stl; tl == erase(r0) }
)
if(i == -1){
x::strongDistinctBy(
xs, erase(x)::acc1, (headList.map(erase(_)), erase(r0))::acc2
)
}
else{
val headListAlready = acc2(i)
val (newHeads, oldHeadsUpdated) =
distinctByWithAcc(headList, erase, headListAlready._1)
newHeads match{
case newHead::Nil =>
ASEQ(bs, newHead, ASTAR(bs0, r0)) ::
strongDistinctBy(xs, erase(x)::acc1,
acc2.updated(i, (oldHeadsUpdated, headListAlready._2)) )//TODO: acc2 already contains headListAlready
case Nil =>
strongDistinctBy(xs, erase(x)::acc1,
acc2)
case hds => val AALTS(bsp, rsp) = r1
ASEQ(bs, AALTS(bsp, hds), ASTAR(bs0, r0)) ::
strongDistinctBy(xs, erase(x)::acc1,
acc2.updated(i, (oldHeadsUpdated, headListAlready._2)))
}
}
case rPrime => x::strongDistinctBy(xs, erase(x)::acc1, acc2)
}
}
}
def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => {
if (bnullable(r)) {
//println(asize(r))
val bits = mkepsBC(r)
bits
}
else throw new Exception("Not matched")
}
case c::cs => {
val der_res = bder(c,r)
val simp_res = bsimp(der_res)
blex_simp(simp_res, cs)
}
}
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ANYCHAR => 1
case NOT(r0) => 1 + size(r0)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALTS(r1, r2) => 1 + List(r1, r2).map(size).sum
case STAR(r) => 1 + size(r)
}
def asize(a: ARexp) = size(erase(a))
// @arg(doc = "small tests")
val STARREG = ("a" | "aa").%
@main
def small() = {
val prog0 = """aaa"""
println(s"test: $prog0")
// println(lexing_simp(NOTREG, prog0))
// val v = lex_simp(NOTREG, prog0.toList)
// println(v)
// val d = (lex_simp(NOTREG, prog0.toList))
// println(d)
val bd = bdersSimp(prog0, STARREG)
println(erase(bd))
println(asize(bd))
val vres = blexing_simp( STARREG, prog0)
println(vres)
// println(vs.length)
// println(vs)
// val prog1 = """read n; write n"""
// println(s"test: $prog1")
// println(lexing_simp(WHILE_REGS, prog1))
}
// // Bigger Tests
// //==============
// // escapes strings and prints them out as "", "\n" and so on
// def esc(raw: String): String = {
// import scala.reflect.runtime.universe._
// Literal(Constant(raw)).toString
// }
// def escape(tks: List[(String, String)]) =
// tks.map{ case (s1, s2) => (s1, esc(s2))}
// val prog2 = """
// write "Fib";
// read n;
// minus1 := 0;
// minus2 := 1;
// while n > 0 do {
// temp := minus2;
// minus2 := minus1 + minus2;
// minus1 := temp;
// n := n - 1
// };
// write "Result";
// write minus2
// """
// @arg(doc = "Fibonacci test")
// @main
// def fib() = {
// println("lexing fib program")
// println(escape(lexing_simp(WHILE_REGS, prog2)).mkString("\n"))
// }
// val prog3 = """
// start := 1000;
// x := start;
// y := start;
// z := start;
// while 0 < x do {
// while 0 < y do {
// while 0 < z do {
// z := z - 1
// };
// z := start;
// y := y - 1
// };
// y := start;
// x := x - 1
// }
// """
// @arg(doc = "Loops test")
// @main
// def loops() = {
// println("lexing Loops")
// println(escape(lexing_simp(WHILE_REGS, prog3)).mkString("\n"))
// }
// @arg(doc = "Email Test")
// @main
// def email() = {
// val lower = "abcdefghijklmnopqrstuvwxyz"
// val NAME = RECD("name", PLUS(RANGE(lower ++ "_.-")))
// val DOMAIN = RECD("domain", PLUS(RANGE(lower ++ "-")))
// val RE = RANGE(lower ++ ".")
// val TOPLEVEL = RECD("top", (RE ~ RE) |
// (RE ~ RE ~ RE) |
// (RE ~ RE ~ RE ~ RE) |
// (RE ~ RE ~ RE ~ RE ~ RE) |
// (RE ~ RE ~ RE ~ RE ~ RE ~ RE))
// val EMAIL = NAME ~ "@" ~ DOMAIN ~ "." ~ TOPLEVEL
// println(lexing_simp(EMAIL, "christian.urban@kcl.ac.uk"))
// }
// @arg(doc = "All tests.")
// @main
// def all() = { small(); fib() ; loops() ; email() }
// runs with amm2 and amm3