theory Pr
imports Main "~~/src/HOL/Number_Theory/Primes" "~~/src/HOL/Real"
begin
fun
add :: "nat \<Rightarrow> nat \<Rightarrow> nat"
where
"add 0 n = n" |
"add (Suc m) n = Suc (add m n)"
fun
doub :: "nat \<Rightarrow> nat"
where
"doub 0 = 0" |
"doub n = n + n"
lemma add_lem:
"add m n = m + n"
apply(induct m arbitrary: )
apply(auto)
done
fun
count :: "'a \<Rightarrow> 'a list \<Rightarrow> nat"
where
"count n Nil = 0" |
"count n (x # xs) = (if n = x then (add 1 (count n xs)) else count n xs)"
value "count 3 [1,2,3,3,4,3,5]"
fun
count2 :: "nat \<Rightarrow> nat list \<Rightarrow> nat"
where
"count2 n Nil = 0" |
"count2 n (Cons x xs) = (if n = x then (add 1 (count2 n xs)) else count2 n xs)"
value "count2 (2::nat) [2,2,3::nat]"
lemma
"count2 x xs \<le> length xs"
apply(induct xs)
apply(simp)
apply(simp)
apply(auto)
done
fun
sum :: "nat \<Rightarrow> nat"
where
"sum 0 = 0"
| "sum (Suc n) = (Suc n) + sum n"
lemma
"sum n = (n * (Suc n)) div 2"
apply(induct n)
apply(auto)
done
lemma
"doub n = add n n"
apply(induct n)
apply(simp)
apply(simp add: add_lem)
done
lemma
fixes a b::nat
shows "(a + b) ^ 2 = a ^ 2 + 2 * a * b + b ^ 2"
apply(simp add: power2_sum)
done
lemma
fixes a b c::"real"
assumes eq: "a * c \<le> b * c" and ineq: "b < a"
shows "c \<le> 0"
proof -
{
assume "0 < c"
then have "b * c < a * c" using ineq by(auto)
then have "False" using eq by auto
} then show "c \<le> 0" by (auto simp add: not_le[symmetric])
qed
lemma "n > 1 \<Longrightarrow> \<not>(prime (2 * n))"
by (metis One_nat_def Suc_leI less_Suc0 not_le numeral_eq_one_iff prime_product semiring_norm(85))
lemma
fixes n::"nat"
assumes a: "n > 1"
and b: "\<not>(prime n)"
shows "\<not>(prime ((2 ^ n) - 1))"
using a b
apply(induct n)
apply(simp)
apply(simp)
end