theory RegLangs
imports Main "HOL-Library.Sublist"
begin
section \<open>Sequential Composition of Languages\<close>
definition
Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
text \<open>Two Simple Properties about Sequential Composition\<close>
lemma Sequ_empty_string [simp]:
shows "A ;; {[]} = A"
and "{[]} ;; A = A"
by (simp_all add: Sequ_def)
lemma Sequ_empty [simp]:
shows "A ;; {} = {}"
and "{} ;; A = {}"
by (simp_all add: Sequ_def)
lemma concI[simp,intro]: "u : A \<Longrightarrow> v : B \<Longrightarrow> u@v : A ;; B"
by (auto simp add: Sequ_def)
lemma concE[elim]:
assumes "w \<in> A ;; B"
obtains u v where "u \<in> A" "v \<in> B" "w = u@v"
using assms by (auto simp: Sequ_def)
lemma concI_if_Nil2: "[] \<in> B \<Longrightarrow> xs : A \<Longrightarrow> xs \<in> A ;; B"
by (metis append_Nil2 concI)
lemma conc_assoc: "(A ;; B) ;; C = A ;; (B ;; C)"
by (auto elim!: concE) (simp only: append_assoc[symmetric] concI)
text \<open>Language power operations\<close>
overloading lang_pow == "compow :: nat \<Rightarrow> string set \<Rightarrow> string set"
begin
primrec lang_pow :: "nat \<Rightarrow> string set \<Rightarrow> string set" where
"lang_pow 0 A = {[]}" |
"lang_pow (Suc n) A = A ;; (lang_pow n A)"
end
lemma conc_pow_comm:
shows "A ;; (A ^^ n) = (A ^^ n) ;; A"
by (induct n) (simp_all add: conc_assoc[symmetric])
lemma lang_pow_add: "A ^^ (n + m) = (A ^^ n) ;; (A ^^ m)"
by (induct n) (auto simp: conc_assoc)
lemma lang_empty:
fixes A::"string set"
shows "A ^^ 0 = {[]}"
by simp
section \<open>Semantic Derivative (Left Quotient) of Languages\<close>
definition
Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
where
"Der c A \<equiv> {s. c # s \<in> A}"
definition
Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
where
"Ders s A \<equiv> {s'. s @ s' \<in> A}"
lemma Der_null [simp]:
shows "Der c {} = {}"
unfolding Der_def
by auto
lemma Der_empty [simp]:
shows "Der c {[]} = {}"
unfolding Der_def
by auto
lemma Der_char [simp]:
shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto
lemma Der_union [simp]:
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto
lemma Der_Sequ [simp]:
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
unfolding Der_def Sequ_def
by (auto simp add: Cons_eq_append_conv)
section \<open>Kleene Star for Languages\<close>
inductive_set
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
for A :: "string set"
where
start[intro]: "[] \<in> A\<star>"
| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
(* Arden's lemma *)
lemma Star_cases:
shows "A\<star> = {[]} \<union> A ;; A\<star>"
unfolding Sequ_def
by (auto) (metis Star.simps)
lemma Star_decomp:
assumes "c # x \<in> A\<star>"
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
using assms
by (induct x\<equiv>"c # x" rule: Star.induct)
(auto simp add: append_eq_Cons_conv)
lemma Star_Der_Sequ:
shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
unfolding Der_def Sequ_def
by(auto simp add: Star_decomp)
lemma Der_inter[simp]: "Der a (A \<inter> B) = Der a A \<inter> Der a B"
and Der_compl[simp]: "Der a (-A) = - Der a A"
and Der_Union[simp]: "Der a (Union M) = Union(Der a ` M)"
and Der_UN[simp]: "Der a (UN x:I. S x) = (UN x:I. Der a (S x))"
by (auto simp: Der_def)
lemma Der_star[simp]:
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -
have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
by (simp only: Star_cases[symmetric])
also have "... = Der c (A ;; A\<star>)"
by (simp only: Der_union Der_empty) (simp)
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
by simp
also have "... = (Der c A) ;; A\<star>"
using Star_Der_Sequ by auto
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
qed
lemma Der_pow[simp]:
shows "Der c (A ^^ n) = (if n = 0 then {} else (Der c A) ;; (A ^^ (n - 1)))"
apply(induct n arbitrary: A)
apply(auto simp add: Cons_eq_append_conv)
by (metis Suc_pred concI_if_Nil2 conc_assoc conc_pow_comm lang_pow.simps(2))
lemma Star_concat:
assumes "\<forall>s \<in> set ss. s \<in> A"
shows "concat ss \<in> A\<star>"
using assms by (induct ss) (auto)
lemma Star_split:
assumes "s \<in> A\<star>"
shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
using assms
apply(induct rule: Star.induct)
using concat.simps(1) apply fastforce
apply(clarify)
by (metis append_Nil concat.simps(2) set_ConsD)
section \<open>Regular Expressions\<close>
datatype rexp =
ZERO
| ONE
| CH char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp
| NTIMES rexp nat
section \<open>Semantics of Regular Expressions\<close>
fun
L :: "rexp \<Rightarrow> string set"
where
"L (ZERO) = {}"
| "L (ONE) = {[]}"
| "L (CH c) = {[c]}"
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
| "L (STAR r) = (L r)\<star>"
| "L (NTIMES r n) = (L r) ^^ n"
section \<open>Nullable, Derivatives\<close>
fun
nullable :: "rexp \<Rightarrow> bool"
where
"nullable (ZERO) = False"
| "nullable (ONE) = True"
| "nullable (CH c) = False"
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"
| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
fun
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
"der c (ZERO) = ZERO"
| "der c (ONE) = ZERO"
| "der c (CH d) = (if c = d then ONE else ZERO)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) =
(if nullable r1
then ALT (SEQ (der c r1) r2) (der c r2)
else SEQ (der c r1) r2)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"
| "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))"
fun
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
"ders [] r = r"
| "ders (c # s) r = ders s (der c r)"
lemma pow_empty_iff:
shows "[] \<in> (L r) ^^ n \<longleftrightarrow> (if n = 0 then True else [] \<in> (L r))"
by (induct n) (auto simp add: Sequ_def)
lemma nullable_correctness:
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
by (induct r) (auto simp add: Sequ_def pow_empty_iff)
lemma der_correctness:
shows "L (der c r) = Der c (L r)"
apply (induct r)
apply(auto simp add: nullable_correctness Sequ_def)
using Der_def apply force
using Der_def apply auto[1]
apply (smt (verit, ccfv_SIG) Der_def append_eq_Cons_conv mem_Collect_eq)
using Der_def apply force
using Der_Sequ Sequ_def by auto
lemma ders_correctness:
shows "L (ders s r) = Ders s (L r)"
by (induct s arbitrary: r)
(simp_all add: Ders_def der_correctness Der_def)
lemma ders_append:
shows "ders (s1 @ s2) r = ders s2 (ders s1 r)"
by (induct s1 arbitrary: s2 r) (auto)
lemma ders_snoc:
shows "ders (s @ [c]) r = der c (ders s r)"
by (simp add: ders_append)
end