thys2/BasicIdentities.thy
author Chengsong
Thu, 24 Mar 2022 20:52:34 +0000
changeset 465 2e7c7111c0be
parent 444 a7e98deebb5c
child 467 599239394c51
permissions -rw-r--r--
ha

theory BasicIdentities imports 
"Lexer"  "PDerivs"
begin

datatype rrexp = 
  RZERO
| RONE 
| RCHAR char
| RSEQ rrexp rrexp
| RALTS "rrexp list"
| RSTAR rrexp

abbreviation
  "RALT r1 r2 \<equiv> RALTS [r1, r2]"



fun
 rnullable :: "rrexp \<Rightarrow> bool"
where
  "rnullable (RZERO) = False"
| "rnullable (RONE  ) = True"
| "rnullable (RCHAR   c) = False"
| "rnullable (RALTS   rs) = (\<exists>r \<in> set rs. rnullable r)"
| "rnullable (RSEQ  r1 r2) = (rnullable r1 \<and> rnullable r2)"
| "rnullable (RSTAR   r) = True"


fun
 rder :: "char \<Rightarrow> rrexp \<Rightarrow> rrexp"
where
  "rder c (RZERO) = RZERO"
| "rder c (RONE) = RZERO"
| "rder c (RCHAR d) = (if c = d then RONE else RZERO)"
| "rder c (RALTS rs) = RALTS (map (rder c) rs)"
| "rder c (RSEQ r1 r2) = 
     (if rnullable r1
      then RALT   (RSEQ (rder c r1) r2) (rder c r2)
      else RSEQ   (rder c r1) r2)"
| "rder c (RSTAR r) = RSEQ  (rder c r) (RSTAR r)"


fun 
  rders :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
where
  "rders r [] = r"
| "rders r (c#s) = rders (rder c r) s"

fun rdistinct :: "'a list \<Rightarrow>'a set \<Rightarrow> 'a list"
  where
  "rdistinct [] acc = []"
| "rdistinct (x#xs)  acc = 
     (if x \<in> acc then rdistinct xs  acc 
      else x # (rdistinct xs  ({x} \<union> acc)))"





fun rflts :: "rrexp list \<Rightarrow> rrexp list"
  where 
  "rflts [] = []"
| "rflts (RZERO # rs) = rflts rs"
| "rflts ((RALTS rs1) # rs) = rs1 @ rflts rs"
| "rflts (r1 # rs) = r1 # rflts rs"


fun rsimp_ALTs :: " rrexp list \<Rightarrow> rrexp"
  where
  "rsimp_ALTs  [] = RZERO"
| "rsimp_ALTs [r] =  r"
| "rsimp_ALTs rs = RALTS rs"

lemma rsimpalts_gte2elems:
  shows "size rlist \<ge> 2 \<Longrightarrow> rsimp_ALTs rlist = RALTS rlist"
  apply(induct rlist)
   apply simp
  apply(induct rlist)
   apply simp
  apply (metis Suc_le_length_iff rsimp_ALTs.simps(3))
  by blast

lemma rsimpalts_conscons:
  shows "rsimp_ALTs (r1 # rsa @ r2 # rsb) = RALTS (r1 # rsa @ r2 # rsb)"
  by (metis Nil_is_append_conv list.exhaust rsimp_ALTs.simps(3))


fun rsimp_SEQ :: " rrexp \<Rightarrow> rrexp \<Rightarrow> rrexp"
  where
  "rsimp_SEQ  RZERO _ = RZERO"
| "rsimp_SEQ  _ RZERO = RZERO"
| "rsimp_SEQ RONE r2 = r2"
| "rsimp_SEQ r1 r2 = RSEQ r1 r2"


fun rsimp :: "rrexp \<Rightarrow> rrexp" 
  where
  "rsimp (RSEQ r1 r2) = rsimp_SEQ  (rsimp r1) (rsimp r2)"
| "rsimp (RALTS rs) = rsimp_ALTs  (rdistinct (rflts (map rsimp rs))  {}) "
| "rsimp r = r"


fun 
  rders_simp :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
where
  "rders_simp r [] = r"
| "rders_simp r (c#s) = rders_simp (rsimp (rder c r)) s"

fun rsize :: "rrexp \<Rightarrow> nat" where
  "rsize RZERO = 1"
| "rsize (RONE) = 1" 
| "rsize (RCHAR  c) = 1"
| "rsize (RALTS  rs) = Suc (sum_list (map rsize rs))"
| "rsize (RSEQ  r1 r2) = Suc (rsize r1 + rsize r2)"
| "rsize (RSTAR  r) = Suc (rsize r)"


lemma rder_rsimp_ALTs_commute:
  shows "  (rder x (rsimp_ALTs rs)) = rsimp_ALTs (map (rder x) rs)"
  apply(induct rs)
   apply simp
  apply(case_tac rs)
   apply simp
  apply auto
  done


lemma rsimp_aalts_smaller:
  shows "rsize (rsimp_ALTs  rs) \<le> rsize (RALTS rs)"
  apply(induct rs)
   apply simp
  apply simp
  apply(case_tac "rs = []")
   apply simp
  apply(subgoal_tac "\<exists>rsp ap. rs = ap # rsp")
   apply(erule exE)+
   apply simp
  apply simp
  by(meson neq_Nil_conv)
  




lemma rSEQ_mono:
  shows "rsize (rsimp_SEQ r1 r2) \<le>rsize ( RSEQ r1 r2)"
  apply auto
  apply(induct r1)
       apply auto
      apply(case_tac "r2")
       apply simp_all
     apply(case_tac r2)
          apply simp_all
     apply(case_tac r2)
         apply simp_all
     apply(case_tac r2)
        apply simp_all
     apply(case_tac r2)
  apply simp_all
  done

lemma ralts_cap_mono:
  shows "rsize (RALTS rs) \<le> Suc ( sum_list (map rsize rs)) "
  by simp

lemma rflts_def_idiot:
  shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk>
       \<Longrightarrow> rflts (a # rs) = a # rflts rs"
  apply(case_tac a)
       apply simp_all
  done


lemma rflts_mono:
  shows "sum_list (map rsize (rflts rs))\<le> sum_list (map rsize rs)"
  apply(induct rs)
  apply simp
  apply(case_tac "a = RZERO")
   apply simp
  apply(case_tac "\<exists>rs1. a = RALTS rs1")
  apply(erule exE)
   apply simp
  apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)")
  prefer 2
  using rflts_def_idiot apply blast
  apply simp
  done

lemma rdistinct_smaller: shows "sum_list (map rsize (rdistinct rs ss)) \<le>
sum_list (map rsize rs )"
  apply (induct rs arbitrary: ss)
   apply simp
  by (simp add: trans_le_add2)

lemma rdistinct_phi_smaller: "sum_list (map rsize (rdistinct rs {})) \<le> sum_list (map rsize rs)"
  by (simp add: rdistinct_smaller)


lemma rsimp_alts_mono :
  shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa)  \<Longrightarrow>
rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (sum_list (map rsize x))"
  apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} )) 
                    \<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))")
  prefer 2
  using rsimp_aalts_smaller apply auto[1]
  apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc( sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})))")
  prefer 2
  using ralts_cap_mono apply blast
  apply(subgoal_tac "sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})) \<le>
                     sum_list (map rsize ( (rflts (map rsimp x))))")
  prefer 2
  using rdistinct_smaller apply presburger
  apply(subgoal_tac "sum_list (map rsize (rflts (map rsimp x))) \<le> 
                     sum_list (map rsize (map rsimp x))")
  prefer 2
  using rflts_mono apply blast
  apply(subgoal_tac "sum_list (map rsize (map rsimp x)) \<le> sum_list (map rsize x)")
  prefer 2
  
  apply (simp add: sum_list_mono)
  by linarith





lemma rsimp_mono:
  shows "rsize (rsimp r) \<le> rsize r"
  apply(induct r)
  apply simp_all
  apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))")
    apply force
  using rSEQ_mono
   apply presburger
  using rsimp_alts_mono by auto

lemma idiot:
  shows "rsimp_SEQ RONE r = r"
  apply(case_tac r)
       apply simp_all
  done

lemma no_alt_short_list_after_simp:
  shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
  sorry

lemma no_further_dB_after_simp:
  shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs"
  sorry


lemma idiot2:
  shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk>
    \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2"
  apply(case_tac r1)
       apply(case_tac r2)
  apply simp_all
     apply(case_tac r2)
  apply simp_all
     apply(case_tac r2)
  apply simp_all
   apply(case_tac r2)
  apply simp_all
  apply(case_tac r2)
       apply simp_all
  done

lemma rders__onechar:
  shows " (rders_simp r [c]) =  (rsimp (rders r [c]))"
  by simp

lemma rders_append:
  "rders c (s1 @ s2) = rders (rders c s1) s2"
  apply(induct s1 arbitrary: c s2)
  apply(simp_all)
  done

lemma rders_simp_append:
  "rders_simp c (s1 @ s2) = rders_simp (rders_simp c s1) s2"
  apply(induct s1 arbitrary: c s2)
   apply(simp_all)
  done

lemma inside_simp_removal:
  shows " rsimp (rder x (rsimp r)) = rsimp (rder x r)"
  sorry

lemma set_related_list:
  shows "distinct rs  \<Longrightarrow> length rs = card (set rs)"
  by (simp add: distinct_card)
(*this section deals with the property of distinctBy: creates a list without duplicates*)
lemma rdistinct_never_added_twice:
  shows "rdistinct (a # rs) {a} = rdistinct rs {a}"
  by force


lemma rdistinct_does_the_job:
  shows "distinct (rdistinct rs s)"
  apply(induct rs arbitrary: s)
   apply simp
  apply simp
  sorry

lemma rders_simp_same_simpders:
  shows "s \<noteq> [] \<Longrightarrow> rders_simp r s = rsimp (rders r s)"
  apply(induct s rule: rev_induct)
   apply simp
  apply(case_tac "xs = []")
   apply simp
  apply(simp add: rders_append rders_simp_append)
  using inside_simp_removal by blast

lemma simp_helps_der_pierce:
  shows " rsimp
            (rder x
              (rsimp_ALTs rs)) = 
          rsimp 
            (rsimp_ALTs 
              (map (rder x )
                rs
              )
            )"
  sorry


lemma rders_simp_one_char:
  shows "rders_simp r [c] = rsimp (rder c r)"
  apply auto
  done

lemma rsimp_idem:
  shows "rsimp (rsimp r) = rsimp r"
  sorry

corollary rsimp_inner_idem1:
  shows "rsimp r = RSEQ r1 r2 \<Longrightarrow> rsimp r1 = r1 \<and> rsimp r2 = r2"
  
  sorry

corollary rsimp_inner_idem2:
  shows "rsimp r = RALTS rs \<Longrightarrow> \<forall>r' \<in> (set rs). rsimp r' = r'"
  sorry

corollary rsimp_inner_idem3:
  shows "rsimp r = RALTS rs \<Longrightarrow> map rsimp rs = rs"
  by (meson map_idI rsimp_inner_idem2)

corollary rsimp_inner_idem4:
  shows "rsimp r = RALTS rs \<Longrightarrow> rflts rs = rs"
  sorry


lemma head_one_more_simp:
  shows "map rsimp (r # rs) = map rsimp (( rsimp r) # rs)"
  by (simp add: rsimp_idem)

lemma head_one_more_dersimp:
  shows "map rsimp ((rder x (rders_simp r s) # rs)) = map rsimp ((rders_simp r (s@[x]) ) # rs)"
  using head_one_more_simp rders_simp_append rders_simp_one_char by presburger




lemma ders_simp_nullability:
  shows "rnullable (rders r s) = rnullable (rders_simp r s)"
  sorry

lemma  first_elem_seqder:
  shows "\<not>rnullable r1p \<Longrightarrow> map rsimp (rder x (RSEQ r1p r2)
                   # rs) = map rsimp ((RSEQ (rder x r1p) r2) # rs) "
  by auto

lemma first_elem_seqder1:
  shows  "\<not>rnullable (rders_simp r xs) \<Longrightarrow> map rsimp ( (rder x (RSEQ (rders_simp r xs) r2)) # rs) = 
                                          map rsimp ( (RSEQ (rsimp (rder x (rders_simp r xs))) r2) # rs)"
  by (simp add: rsimp_idem)

lemma first_elem_seqdersimps:
  shows "\<not>rnullable (rders_simp r xs) \<Longrightarrow> map rsimp ( (rder x (RSEQ (rders_simp r xs) r2)) # rs) = 
                                          map rsimp ( (RSEQ (rders_simp r (xs @ [x])) r2) # rs)"
  using first_elem_seqder1 rders_simp_append by auto






lemma seq_ders_closed_form1:
  shows "\<exists>Ss. rders_simp (RSEQ r1 r2) [c] = rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # 
(map ( rders_simp r2 ) Ss)))"
  apply(case_tac "rnullable r1")
   apply(subgoal_tac " rders_simp (RSEQ r1 r2) [c] = 
rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [[c]])))")
    prefer 2
    apply (simp add: rsimp_idem)
   apply(rule_tac x = "[[c]]" in exI)
   apply simp
  apply(subgoal_tac  " rders_simp (RSEQ r1 r2) [c] = 
rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [])))")
   apply blast
  apply(simp add: rsimp_idem)
  sorry








lemma simp_flatten2:
  shows "rsimp (RALTS (r # [RALTS rs])) = rsimp (RALTS (r # rs))"
  sorry


lemma simp_flatten:
  shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))"

  sorry



fun vsuf :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list" where
"vsuf [] _ = []"
|"vsuf (c#cs) r1 = (if (rnullable r1) then  (vsuf cs (rder c r1)) @ [c # cs]
                                      else  (vsuf cs (rder c r1))
                   ) "






fun star_update :: "char \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list" where
"star_update c r [] = []"
|"star_update c r (s # Ss) = (if (rnullable (rders_simp r s)) 
                                then (s@[c]) # [c] # (star_update c r Ss) 
                               else   (s@[c]) # (star_update c r Ss) )"

fun star_updates :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list"
  where
"star_updates [] r Ss = Ss"
| "star_updates (c # cs) r Ss = star_updates cs r (star_update c r Ss)"






(*some basic facts about rsimp*)




end