theory Sulzmann
imports "ReStar"
begin
section {* Sulzmann's "Ordering" of Values *}
inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ >_ _" [100, 100, 100] 100)
where
C2: "v1 >r1 v1' \<Longrightarrow> (Seq v1 v2) >(SEQ r1 r2) (Seq v1' v2')"
| C1: "v2 >r2 v2' \<Longrightarrow> (Seq v1 v2) >(SEQ r1 r2) (Seq v1 v2')"
| A1: "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) >(ALT r1 r2) (Left v1)"
| A2: "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) >(ALT r1 r2) (Right v2)"
| A3: "v2 >r2 v2' \<Longrightarrow> (Right v2) >(ALT r1 r2) (Right v2')"
| A4: "v1 >r1 v1' \<Longrightarrow> (Left v1) >(ALT r1 r2) (Left v1')"
| K1: "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) >(STAR r) (Stars (v # vs))"
| K2: "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) >(STAR r) (Stars [])"
| K3: "v1 >r v2 \<Longrightarrow> (Stars (v1 # vs1)) >(STAR r) (Stars (v2 # vs2))"
| K4: "(Stars vs1) >(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) >(STAR r) (Stars (v # vs2))"
definition ValOrdEq :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<ge>_ _" [100, 100, 100] 100)
where
"v\<^sub>1 \<ge>r v\<^sub>2 \<equiv> v\<^sub>1 = v\<^sub>2 \<or> (v\<^sub>1 >r v\<^sub>2 \<and> flat v\<^sub>1 = flat v\<^sub>2)"
(*
inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<succ>_ _" [100, 100, 100] 100)
where
"v2 \<succ>r2 v2' \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1 v2')"
| "\<lbrakk>v1 \<succ>r1 v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')"
| "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Right v2)"
| "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Left v1)"
| "v2 \<succ>r2 v2' \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Right v2')"
| "v1 \<succ>r1 v1' \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Left v1')"
| "Void \<succ>EMPTY Void"
| "(Char c) \<succ>(CHAR c) (Char c)"
| "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) \<succ>(STAR r) (Stars (v # vs))"
| "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) \<succ>(STAR r) (Stars [])"
| "\<lbrakk>v1 \<succ>r v2; v1 \<noteq> v2\<rbrakk> \<Longrightarrow> (Stars (v1 # vs1)) \<succ>(STAR r) (Stars (v2 # vs2))"
| "(Stars vs1) \<succ>(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) \<succ>(STAR r) (Stars (v # vs2))"
| "(Stars []) \<succ>(STAR r) (Stars [])"
*)
section {* Bit-Encodings *}
fun
code :: "val \<Rightarrow> rexp \<Rightarrow> bool list"
where
"code Void ONE = []"
| "code (Char c) (CHAR d) = []"
| "code (Left v) (ALT r1 r2) = False # (code v r1)"
| "code (Right v) (ALT r1 r2) = True # (code v r2)"
| "code (Seq v1 v2) (SEQ r1 r2) = (code v1 r1) @ (code v2 r2)"
| "code (Stars []) (STAR r) = [True]"
| "code (Stars (v # vs)) (STAR r) = False # (code v r) @ code (Stars vs) (STAR r)"
fun
Stars_add :: "val \<Rightarrow> val \<Rightarrow> val"
where
"Stars_add v (Stars vs) = Stars (v # vs)"
function
decode' :: "bool list \<Rightarrow> rexp \<Rightarrow> (val * bool list)"
where
"decode' ds ZERO = (Void, [])"
| "decode' ds ONE = (Void, ds)"
| "decode' ds (CHAR d) = (Char d, ds)"
| "decode' [] (ALT r1 r2) = (Void, [])"
| "decode' (False # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))"
| "decode' (True # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))"
| "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in
let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))"
| "decode' [] (STAR r) = (Void, [])"
| "decode' (True # ds) (STAR r) = (Stars [], ds)"
| "decode' (False # ds) (STAR r) = (let (v, ds') = decode' ds r in
let (vs, ds'') = decode' ds' (STAR r)
in (Stars_add v vs, ds''))"
by pat_completeness auto
term "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))"
lemma decode'_smaller:
assumes "decode'_dom (ds, r)"
shows "length (snd (decode' ds r)) \<le> length ds"
using assms
apply(induct ds r)
apply(auto simp add: decode'.psimps split: prod.split)
using dual_order.trans apply blast
by (meson dual_order.trans le_SucI)
termination "decode'"
apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))")
apply(auto dest!: decode'_smaller)
by (metis less_Suc_eq_le snd_conv)
fun
decode :: "bool list \<Rightarrow> rexp \<Rightarrow> val option"
where
"decode ds r = (let (v, ds') = decode' ds r
in (if ds' = [] then Some v else None))"
lemma decode'_code:
assumes "\<turnstile> v : r"
shows "decode' ((code v r) @ ds) r = (v, ds)"
using assms
by (induct v r arbitrary: ds) (auto)
lemma decode_code:
assumes "\<turnstile> v : r"
shows "decode (code v r) r = Some v"
using assms decode'_code[of _ _ "[]"]
by auto
end