thys2/ClosedForms.thy
author Chengsong
Fri, 15 Apr 2022 19:35:29 +0100
changeset 489 2b5b3f83e2b6
parent 488 370dae790b30
child 490 64183736777a
permissions -rw-r--r--
1sorry left

theory ClosedForms imports
"BasicIdentities"
begin

lemma flts_middle0:
  shows "rflts (rsa @ RZERO # rsb) = rflts (rsa @ rsb)"
  apply(induct rsa)
  apply simp
  by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)

lemma simp_flatten3:
  shows "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = rsimp (RALTS (rsa @ rs @ rsb))"
  apply(induct rsa)
  
  using simp_flatten apply force

  sorry

inductive 
  hrewrite:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99)
where
  "RSEQ  RZERO r2 \<leadsto> RZERO"
| "RSEQ  r1 RZERO \<leadsto> RZERO"
| "RSEQ  RONE r \<leadsto>  r"
| "r1 \<leadsto> r2 \<Longrightarrow> RSEQ  r1 r3 \<leadsto> RSEQ r2 r3"
| "r3 \<leadsto> r4 \<Longrightarrow> RSEQ r1 r3 \<leadsto> RSEQ r1 r4"
| "r \<leadsto> r' \<Longrightarrow> (RALTS (rs1 @ [r] @ rs2)) \<leadsto> (RALTS  (rs1 @ [r'] @ rs2))"
(*context rule for eliminating 0, alts--corresponds to the recursive call flts r::rs = r::(flts rs)*)
| "RALTS  (rsa @ [RZERO] @ rsb) \<leadsto> RALTS  (rsa @ rsb)"
| "RALTS  (rsa @ [RALTS rs1] @ rsb) \<leadsto> RALTS (rsa @ rs1 @ rsb)"
| "RALTS  [] \<leadsto> RZERO"
| "RALTS  [r] \<leadsto> r"
| "a1 = a2 \<Longrightarrow> RALTS (rsa@[a1]@rsb@[a2]@rsc) \<leadsto> RALTS (rsa @ [a1] @ rsb @ rsc)"

inductive 
  hrewrites:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100)
where 
  rs1[intro, simp]:"r \<leadsto>* r"
| rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"


lemma hr_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2"
  using hrewrites.intros(1) hrewrites.intros(2) by blast
 
lemma hreal_trans[trans]: 
  assumes a1: "r1 \<leadsto>* r2"  and a2: "r2 \<leadsto>* r3"
  shows "r1 \<leadsto>* r3"
  using a2 a1
  apply(induct r2 r3 arbitrary: r1 rule: hrewrites.induct) 
  apply(auto)
  done

lemma  hmany_steps_later: "\<lbrakk>r1 \<leadsto> r2; r2 \<leadsto>* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"
  by (meson hr_in_rstar hreal_trans)

lemma hrewrites_seq_context:
  shows "r1 \<leadsto>* r2 \<Longrightarrow> RSEQ r1 r3 \<leadsto>* RSEQ r2 r3"
  apply(induct r1 r2 rule: hrewrites.induct)
   apply simp
  using hrewrite.intros(4) by blast

lemma hrewrites_seq_context2:
  shows "r1 \<leadsto>* r2 \<Longrightarrow> RSEQ r0 r1 \<leadsto>* RSEQ r0 r2"
  apply(induct r1 r2 rule: hrewrites.induct)
   apply simp
  using hrewrite.intros(5) by blast

lemma hrewrites_seq_context0:
  shows "r1 \<leadsto>* RZERO \<Longrightarrow> RSEQ r1 r3 \<leadsto>* RZERO"
  apply(subgoal_tac "RSEQ r1 r3 \<leadsto>* RSEQ RZERO r3")
  using hrewrite.intros(1) apply blast
  by (simp add: hrewrites_seq_context)

lemma hrewrites_seq_contexts:
  shows "\<lbrakk>r1 \<leadsto>* r2; r3 \<leadsto>* r4\<rbrakk> \<Longrightarrow> RSEQ r1 r3 \<leadsto>* RSEQ r2 r4"
  by (meson hreal_trans hrewrites_seq_context hrewrites_seq_context2)



lemma map_concat_cons:
  shows "map f rsa @ f a # rs = map f (rsa @ [a]) @ rs"
  by simp

lemma neg_removal_element_of:
  shows " \<not> a \<notin> aset \<Longrightarrow> a \<in> aset"
  by simp











lemma flts_middle01:
  shows "rflts (rsa @ [RZERO] @ rsb) = rflts (rsa @ rsb)"
  by (simp add: flts_middle0)

lemma flts_append1:
  shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk>  \<Longrightarrow>
         rflts (rsa @ [a] @ rsb) = rflts rsa @ [a] @ (rflts rsb)"
  apply(induct rsa arbitrary: rsb)
   apply simp
  using rflts_def_idiot apply presburger
  apply(case_tac aa)  
       apply simp+
  done



lemma simp_removes_duplicate1:
  shows  " a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a])) =  rsimp (RALTS (rsa))"
and " rsimp (RALTS (a1 # rsa @ [a1])) = rsimp (RALTS (a1 # rsa))"
  apply(induct rsa arbitrary: a1)
     apply simp
    apply simp
  prefer 2
  apply(case_tac "a = aa")
     apply simp
    apply simp
  apply (metis Cons_eq_appendI Cons_eq_map_conv distinct_removes_duplicate_flts list.set_intros(2))
  apply (metis append_Cons append_Nil distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9))
  by (metis (mono_tags, lifting) append_Cons distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9) map_append rsimp.simps(2))
  
lemma simp_removes_duplicate2:
  shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a] @ rsb)) = rsimp (RALTS (rsa @ rsb))"
  apply(induct rsb arbitrary: rsa)
   apply simp
  using distinct_removes_duplicate_flts apply auto[1]
  by (metis append.assoc head_one_more_simp rsimp.simps(2) simp_flatten simp_removes_duplicate1(1))

lemma simp_removes_duplicate3:
  shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ a # rsb)) = rsimp (RALTS (rsa @ rsb))"
  using simp_removes_duplicate2 by auto

lemma distinct_removes_middle4:
  shows "a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ [a] @ rsb) rset = rdistinct (rsa @ rsb) rset"
  using distinct_removes_middle(1) by fastforce

lemma distinct_removes_middle_list:
  shows "\<forall>a \<in> set x. a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ x @ rsb) rset = rdistinct (rsa @ rsb) rset"
  apply(induct x)
   apply simp
  by (simp add: distinct_removes_middle3)


lemma distinct_removes_duplicate_flts2:
  shows " a \<in> set rsa
       \<Longrightarrow> rdistinct (rflts (rsa @ [a] @ rsb)) {} =
           rdistinct (rflts (rsa @ rsb)) {}"
  apply(induct a arbitrary: rsb)
  using flts_middle01 apply presburger
      apply(subgoal_tac "rflts (rsa @ [RONE] @ rsb) = rflts rsa @ [RONE] @ rflts rsb")
  prefer 2
  using flts_append1 apply blast
      apply simp
      apply(subgoal_tac "RONE \<in> set (rflts rsa)")
  prefer 2
  using rflts_def_idiot2 apply blast
      apply(subst distinct_removes_middle3)
       apply simp
  using flts_append apply presburger
     apply simp
  apply (metis distinct_removes_middle3 flts_append in_set_conv_decomp rflts.simps(5))
  apply (metis distinct_removes_middle(1) flts_append flts_append1 rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(5))
   apply(subgoal_tac "rflts (rsa @ [RALTS x] @ rsb) = rflts rsa @ x @ rflts rsb")
    prefer 2
  apply (simp add: flts_append)
   apply (simp only:)

   apply(subgoal_tac "\<forall>r1 \<in> set x. r1 \<in> set (rflts rsa)")
    prefer 2
  using spilled_alts_contained apply blast
  apply(subst flts_append)
  using distinct_removes_middle_list apply blast
  using distinct_removes_middle2 flts_append rflts_def_idiot2 by fastforce


lemma simp_removes_duplicate:
  shows "a \<in> set rsa \<Longrightarrow> rsimp (rsimp_ALTs (rsa @ a # rs)) =  rsimp (rsimp_ALTs (rsa @ rs))"
  apply(subgoal_tac "rsimp (rsimp_ALTs (rsa @ a # rs)) = rsimp (RALTS (rsa @ a # rs))")
   prefer 2
  apply (smt (verit, best) Cons_eq_append_conv append_is_Nil_conv empty_set equals0D list.distinct(1) rsimp_ALTs.elims)
  apply(simp only:)
  apply simp
  apply(subgoal_tac "(rdistinct (rflts (map rsimp rsa @ rsimp a # map rsimp rs)) {}) = (rdistinct (rflts (map rsimp rsa @  map rsimp rs)) {})")
   apply(simp only:)
  prefer 2
   apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)")
    prefer 2
  apply simp
  using distinct_removes_duplicate_flts2 apply force
  apply(case_tac rsa)
   apply simp
  apply(case_tac rs)
   apply simp
   apply(case_tac list)
    apply simp
  using idem_after_simp1 apply presburger
   apply simp+
  apply(subgoal_tac "rsimp_ALTs (aa # list @ aaa # lista) = RALTS (aa # list @ aaa # lista)")
   apply simp
  using rsimpalts_conscons by presburger








inductive frewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f _" [10, 10] 10)
  where
  "(RZERO # rs) \<leadsto>f rs"
| "((RALTS rs) # rsa) \<leadsto>f (rs @ rsa)"
| "rs1 \<leadsto>f rs2 \<Longrightarrow> (r # rs1) \<leadsto>f (r # rs2)"


inductive 
  frewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f* _" [10, 10] 10)
where 
  [intro, simp]:"rs \<leadsto>f* rs"
| [intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>f* rs3"

inductive grewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g _" [10, 10] 10)
  where
  "(RZERO # rs) \<leadsto>g rs"
| "((RALTS rs) # rsa) \<leadsto>g (rs @ rsa)"
| "rs1 \<leadsto>g rs2 \<Longrightarrow> (r # rs1) \<leadsto>g (r # rs2)"
| "rsa @ [a] @ rsb @ [a] @ rsc \<leadsto>g rsa @ [a] @ rsb @ rsc" 

lemma grewrite_variant1:
  shows "a \<in> set rs1 \<Longrightarrow> rs1 @ a # rs \<leadsto>g rs1 @ rs"
  apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first)
  done


inductive 
  grewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g* _" [10, 10] 10)
where 
  [intro, simp]:"rs \<leadsto>g* rs"
| [intro]: "\<lbrakk>rs1 \<leadsto>g* rs2; rs2 \<leadsto>g rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>g* rs3"



(*
inductive 
  frewrites2:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ <\<leadsto>f* _" [10, 10] 10)
where 
 [intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f* rs1\<rbrakk> \<Longrightarrow> rs1 <\<leadsto>f* rs2"
*)

lemma fr_in_rstar : "r1 \<leadsto>f r2 \<Longrightarrow> r1 \<leadsto>f* r2"
  using frewrites.intros(1) frewrites.intros(2) by blast
 
lemma freal_trans[trans]: 
  assumes a1: "r1 \<leadsto>f* r2"  and a2: "r2 \<leadsto>f* r3"
  shows "r1 \<leadsto>f* r3"
  using a2 a1
  apply(induct r2 r3 arbitrary: r1 rule: frewrites.induct) 
  apply(auto)
  done


lemma  many_steps_later: "\<lbrakk>r1 \<leadsto>f r2; r2 \<leadsto>f* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>f* r3"
  by (meson fr_in_rstar freal_trans)


lemma gr_in_rstar : "r1 \<leadsto>g r2 \<Longrightarrow> r1 \<leadsto>g* r2"
  using grewrites.intros(1) grewrites.intros(2) by blast
 
lemma greal_trans[trans]: 
  assumes a1: "r1 \<leadsto>g* r2"  and a2: "r2 \<leadsto>g* r3"
  shows "r1 \<leadsto>g* r3"
  using a2 a1
  apply(induct r2 r3 arbitrary: r1 rule: grewrites.induct) 
  apply(auto)
  done


lemma  gmany_steps_later: "\<lbrakk>r1 \<leadsto>g r2; r2 \<leadsto>g* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>g* r3"
  by (meson gr_in_rstar greal_trans)

lemma gstar_rdistinct_general:
  shows "rs1 @  rs \<leadsto>g* rs1 @ (rdistinct rs (set rs1))"
  apply(induct rs arbitrary: rs1)
   apply simp
  apply(case_tac " a \<in> set rs1")
   apply simp
  apply(subgoal_tac "rs1 @ a # rs \<leadsto>g rs1 @ rs")
  using gmany_steps_later apply auto[1]
  apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first)
  apply simp
  apply(drule_tac x = "rs1 @ [a]" in meta_spec)
  by simp


lemma gstar_rdistinct:
  shows "rs \<leadsto>g* rdistinct rs {}"
  apply(induct rs)
   apply simp
  by (metis append.left_neutral empty_set gstar_rdistinct_general)



lemma frewrite_append:
  shows "\<lbrakk> rsa \<leadsto>f rsb \<rbrakk> \<Longrightarrow> rs @ rsa \<leadsto>f rs @ rsb"
  apply(induct rs)
   apply simp+
  using frewrite.intros(3) by blast

lemma grewrite_append:
  shows "\<lbrakk> rsa \<leadsto>g rsb \<rbrakk> \<Longrightarrow> rs @ rsa \<leadsto>g rs @ rsb"
  apply(induct rs)
   apply simp+
  using grewrite.intros(3) by blast
  


lemma frewrites_cons:
  shows "\<lbrakk> rsa \<leadsto>f* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>f* r # rsb"
  apply(induct rsa rsb rule: frewrites.induct)
   apply simp
  using frewrite.intros(3) by blast


lemma grewrites_cons:
  shows "\<lbrakk> rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>g* r # rsb"
  apply(induct rsa rsb rule: grewrites.induct)
   apply simp
  using grewrite.intros(3) by blast


lemma frewrites_append:
  shows " \<lbrakk>rsa \<leadsto>f* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>f* (rs @ rsb)"
  apply(induct rs)
   apply simp
  by (simp add: frewrites_cons)

lemma grewrites_append:
  shows " \<lbrakk>rsa \<leadsto>g* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>g* (rs @ rsb)"
  apply(induct rs)
   apply simp
  by (simp add: grewrites_cons)



lemma frewrites_concat:
  shows "\<lbrakk>rs1 \<leadsto>f rs2; rsa \<leadsto>f* rsb \<rbrakk> \<Longrightarrow> (rs1 @ rsa) \<leadsto>f* (rs2 @ rsb)"
  apply(induct rs1 rs2 rule: frewrite.induct)
    apply(simp)
  apply(subgoal_tac "(RZERO # rs @ rsa) \<leadsto>f (rs @ rsa)")
  prefer 2
  using frewrite.intros(1) apply blast
    apply(subgoal_tac "(rs @ rsa) \<leadsto>f* (rs @ rsb)")
  using many_steps_later apply blast
  apply (simp add: frewrites_append)
  apply (metis append.assoc append_Cons frewrite.intros(2) frewrites_append many_steps_later)
  using frewrites_cons by auto

lemma grewrites_concat:
  shows "\<lbrakk>rs1 \<leadsto>g rs2; rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> (rs1 @ rsa) \<leadsto>g* (rs2 @ rsb)"
  apply(induct rs1 rs2 rule: grewrite.induct)
    apply(simp)
  apply(subgoal_tac "(RZERO # rs @ rsa) \<leadsto>g (rs @ rsa)")
  prefer 2
  using grewrite.intros(1) apply blast
    apply(subgoal_tac "(rs @ rsa) \<leadsto>g* (rs @ rsb)")
  using gmany_steps_later apply blast
  apply (simp add: grewrites_append)
  apply (metis append.assoc append_Cons grewrite.intros(2) grewrites_append gmany_steps_later)
  using grewrites_cons apply auto
  apply(subgoal_tac "rsaa @ a # rsba @ a # rsc @ rsa \<leadsto>g* rsaa @ a # rsba @ a # rsc @ rsb")
  using grewrite.intros(4) grewrites.intros(2) apply force
  using grewrites_append by auto


lemma grewritess_concat:
  shows "\<lbrakk>rsa \<leadsto>g* rsb; rsc \<leadsto>g* rsd \<rbrakk> \<Longrightarrow> (rsa @ rsc) \<leadsto>g* (rsb @ rsd)"
  apply(induct rsa rsb rule: grewrites.induct)
   apply(case_tac rs)
    apply simp
  using grewrites_append apply blast   
  by (meson greal_trans grewrites.simps grewrites_concat)

fun alt_set:: "rrexp \<Rightarrow> rrexp set"
  where
  "alt_set (RALTS rs) = set rs \<union> \<Union> (alt_set ` (set rs))"
| "alt_set r = {r}"

lemma alt_set_has_all:
  shows "RALTS rs \<in> alt_set rx \<Longrightarrow> set rs \<subseteq> alt_set rx"
  apply(induct rx arbitrary: rs)
       apply simp_all
  apply(rename_tac rSS rss)
  using in_mono by fastforce





lemma grewrite_cases_middle:
  shows "rs1 \<leadsto>g rs2 \<Longrightarrow> 
(\<exists>rsa rsb rsc. rs1 =  (rsa @ [RALTS rsb] @ rsc) \<and> rs2 = (rsa @ rsb @ rsc)) \<or>
(\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc) \<or>
(\<exists>rsa rsb rsc a. rs1 = rsa @ [a] @ rsb @ [a] @ rsc \<and> rs2 = rsa @ [a] @ rsb @ rsc)"
  apply( induct rs1 rs2 rule: grewrite.induct)
     apply simp
  apply blast
  apply (metis append_Cons append_Nil)
  apply (metis append_Cons)
  by blast


lemma grewrite_equal_rsimp:
  shows "rs1 \<leadsto>g rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
  apply(frule grewrite_cases_middle)
  apply(case_tac "(\<exists>rsa rsb rsc. rs1 = rsa @ [RALTS rsb] @ rsc \<and> rs2 = rsa @ rsb @ rsc)")  
  using simp_flatten3 apply auto[1]
  apply(case_tac "(\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc)")
  apply (metis (mono_tags, opaque_lifting) append_Cons append_Nil list.set_intros(1) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) simp_removes_duplicate3)
  by (smt (verit) append.assoc append_Cons append_Nil in_set_conv_decomp simp_removes_duplicate3)


lemma grewrites_equal_rsimp:
  shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
  apply (induct rs1 rs2 rule: grewrites.induct)
  apply simp
  using grewrite_equal_rsimp by presburger
  



lemma grewrites_equal_simp_2:
  shows "rsimp (RALTS rs1) = rsimp (RALTS rs2) \<Longrightarrow> rs1 \<leadsto>g* rs2"
  oops




lemma grewrites_last:
  shows "r # [RALTS rs] \<leadsto>g*  r # rs"
  by (metis gr_in_rstar grewrite.intros(2) grewrite.intros(3) self_append_conv)

lemma simp_flatten2:
  shows "rsimp (RALTS (r # [RALTS rs])) = rsimp (RALTS (r # rs))"
  using grewrites_equal_rsimp grewrites_last by blast

lemma frewrites_middle:
  shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> r # (RALTS rs # rs1) \<leadsto>f* r # (rs @ rs1)"
  by (simp add: fr_in_rstar frewrite.intros(2) frewrite.intros(3))

lemma frewrites_alt:
  shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> (RALT r1 r2) # rs1 \<leadsto>f* r1 # r2 # rs2"  
  by (metis Cons_eq_appendI append_self_conv2 frewrite.intros(2) frewrites_cons many_steps_later)

lemma early_late_der_frewrites:
  shows "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)"
  apply(induct rs)
   apply simp
  apply(case_tac a)
       apply simp+
  using frewrite.intros(1) many_steps_later apply blast
     apply(case_tac "x = x3")
      apply simp
  using frewrites_cons apply presburger
  using frewrite.intros(1) many_steps_later apply fastforce
  apply(case_tac "rnullable x41")
     apply simp+
     apply (simp add: frewrites_alt)
  apply (simp add: frewrites_cons)
   apply (simp add: frewrites_append)
  by (simp add: frewrites_cons)




lemma with_wo0_distinct:
  shows "rdistinct rs rset \<leadsto>f* rdistinct rs (insert RZERO rset)"
  apply(induct rs arbitrary: rset)
   apply simp
  apply(case_tac a)
  apply(case_tac "RZERO \<in> rset")
        apply simp+
  using fr_in_rstar frewrite.intros(1) apply presburger
  apply (case_tac "RONE \<in> rset")
       apply simp+
  using frewrites_cons apply presburger
     apply(case_tac "a \<in> rset")
  apply simp
  apply (simp add: frewrites_cons)
     apply(case_tac "a \<in> rset")
  apply simp
  apply (simp add: frewrites_cons)
       apply(case_tac "a \<in> rset")
  apply simp
  apply (simp add: frewrites_cons)
       apply(case_tac "a \<in> rset")
  apply simp
  apply (simp add: frewrites_cons)
  done

(*Interesting lemma: not obvious but easily proven by sledgehammer*)

  


(*lemma induction last rule not go through
 example:
r #
           rdistinct rs1
            (insert RZERO
              (insert r
                (rset \<union>
                 \<Union> (alt_set `
                     rset)))) \<leadsto>g* r #
                                   rdistinct rs2
                                    (insert RZERO (insert r (rset \<union> \<Union> (alt_set ` rset))))
 rs2 = [+rs] rs3 = rs,
r = +rs
[] \<leadsto>g* rs which is wrong
*)







lemma frewrite_simpeq:
  shows "rs1 \<leadsto>f rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
  apply(induct rs1 rs2 rule: frewrite.induct)
    apply simp
  using simp_flatten apply presburger
  by (metis (no_types, opaque_lifting) grewrites_equal_rsimp grewrites_last list.simps(9) rsimp.simps(2))

lemma gstar0:
  shows "rsa @ (rdistinct rs (set rsa)) \<leadsto>g* rsa @ (rdistinct rs (insert RZERO (set rsa)))"
  apply(induct rs arbitrary: rsa)
   apply simp
  apply(case_tac "a = RZERO")
   apply simp
  
  using gr_in_rstar grewrite.intros(1) grewrites_append apply presburger
  apply(case_tac "a \<in> set rsa")
   apply simp+
  apply(drule_tac x = "rsa @ [a]" in meta_spec)
  by simp
  
lemma gstar01:
  shows "rdistinct rs {} \<leadsto>g* rdistinct rs {RZERO}"
  by (metis empty_set gstar0 self_append_conv2)


lemma grewrite_rdistinct_aux:
  shows "rs @ rdistinct rsa rset \<leadsto>g* rs @ rdistinct rsa (rset \<union> set rs)"
  apply(induct rsa arbitrary: rs rset)
   apply simp
  apply(case_tac " a \<in> rset")
   apply simp
  apply(case_tac "a \<in> set rs")
  apply simp
   apply (metis Un_insert_left Un_insert_right gmany_steps_later grewrite_variant1 insert_absorb)
  apply simp
  apply(drule_tac x = "rs @ [a]" in meta_spec)
  by (metis Un_insert_left Un_insert_right append.assoc append.right_neutral append_Cons append_Nil insert_absorb2 list.simps(15) set_append)
  

lemma grewrite_rdistinct_worth1:
  shows "(rsb @ [a]) @ rdistinct rs set1 \<leadsto>g* (rsb @ [a]) @ rdistinct rs (insert a set1)"
  by (metis append.assoc empty_set grewrite_rdistinct_aux grewrites_append inf_sup_aci(5) insert_is_Un list.simps(15))

lemma grewrite_rdisitinct:
  shows "rs @ rdistinct rsa {RALTS rs} \<leadsto>g* rs @ rdistinct rsa (insert (RALTS rs) (set rs))"
  apply(induct rsa arbitrary: rs)
   apply simp
  apply(case_tac "a = RALTS rs")
  apply simp
  apply(case_tac "a \<in> set rs")
   apply simp
  apply(subgoal_tac "rs @
           a # rdistinct rsa {RALTS rs, a} \<leadsto>g rs @ rdistinct rsa {RALTS rs, a}")
    apply(subgoal_tac 
"rs @ rdistinct rsa {RALTS rs, a} \<leadsto>g* rs @ rdistinct rsa (insert (RALTS rs) (set rs))")
  using gmany_steps_later apply blast
    apply(subgoal_tac 
" rs @ rdistinct rsa {RALTS rs, a} \<leadsto>g* rs @ rdistinct rsa ({RALTS rs, a} \<union> set rs)")
     apply (simp add: insert_absorb)
  using grewrite_rdistinct_aux apply blast
  using grewrite_variant1 apply blast
  by (metis grewrite_rdistinct_aux insert_is_Un)

  
lemma frewrite_rd_grewrites_general:
  shows "\<lbrakk>rs1 \<leadsto>f rs2; \<And>rs. \<exists>rs3. 
(rs @ (rdistinct rs1 (set rs)) \<leadsto>g* rs3) \<and> (rs @ (rdistinct rs2 (set rs)) \<leadsto>g* rs3)\<rbrakk>
       \<Longrightarrow> 
\<exists>rs3. (rs @ (r # rdistinct rs1 (set rs \<union> {r})) \<leadsto>g* rs3) \<and> (rs @ (r # rdistinct rs2 (set rs \<union> {r})) \<leadsto>g* rs3)"
  apply(drule_tac x = "rs @ [r]" in meta_spec )
  by simp


lemma alts_g_can_flts:
  shows "RALTS rs \<in> set rsb \<Longrightarrow> \<exists>rs1 rs2.( rflts rsb = rs1 @ rs @ rs2)"
  by (metis flts_append rflts.simps(3) split_list_last)

lemma flts_gstar:
  shows "rs \<leadsto>g* rflts rs"
  apply(induct rs)
   apply simp
  apply(case_tac "a = RZERO")
   apply simp
  using gmany_steps_later grewrite.intros(1) apply blast
  apply(case_tac "\<exists>rsa. a = RALTS rsa")
   apply(erule exE)
  apply simp
   apply (meson grewrite.intros(2) grewrites.simps grewrites_cons)
  by (simp add: grewrites_cons rflts_def_idiot)


lemma wrong1:
  shows "a \<in> set rs1 \<Longrightarrow> rs1 @ (rdistinct rs (insert a rset)) \<leadsto>g* rs1 @ (rdistinct rs (rset))"
  
  oops

lemma more_distinct1:
  shows "       \<lbrakk>\<And>rsb rset rset2.
           rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2);
        rset2 \<subseteq> set rsb; a \<notin> rset; a \<in> rset2\<rbrakk>
       \<Longrightarrow> rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)"
  apply(subgoal_tac "rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (insert a rset)")
   apply(subgoal_tac "rsb @ rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)")
    apply (meson greal_trans)
   apply (metis Un_iff Un_insert_left insert_absorb)
  by (simp add: gr_in_rstar grewrite_variant1 in_mono)
  




lemma grewrites_in_distinct0:
  shows "a \<in>  set rs1 \<Longrightarrow> rs1 @ (rdistinct (a # rs) rset) \<leadsto>g* rs1 @ (rdistinct rs rset)"
  apply(case_tac "a \<in> rset")
   apply simp
  apply simp
  oops

 


  




lemma frewrite_rd_grewrites_aux:
  shows     "       RALTS rs \<notin> set rsb \<Longrightarrow>
       rsb @
       RALTS rs #
       rdistinct rsa
        (insert (RALTS rs)
          (set rsb)) \<leadsto>g* rflts rsb @
                          rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"

   apply simp
  apply(subgoal_tac "rsb @
    RALTS rs #
    rdistinct rsa
     (insert (RALTS rs)
       (set rsb)) \<leadsto>g* rsb @
    rs @
    rdistinct rsa
     (insert (RALTS rs)
       (set rsb)) ")
  apply(subgoal_tac " rsb @
    rs @
    rdistinct rsa
     (insert (RALTS rs)
       (set rsb)) \<leadsto>g*
                      rsb @
    rdistinct rs (set rsb) @
    rdistinct rsa
     (insert (RALTS rs)
       (set rsb)) ")
    apply (smt (verit, ccfv_SIG) Un_insert_left flts_gstar greal_trans grewrite_rdistinct_aux grewritess_concat inf_sup_aci(5) rdistinct_concat_general rdistinct_set_equality set_append)
   apply (metis append_assoc grewrites.intros(1) grewritess_concat gstar_rdistinct_general)
  by (simp add: gr_in_rstar grewrite.intros(2) grewrites_append)
  



lemma list_dlist_union:
  shows "set rs \<subseteq> set rsb \<union> set (rdistinct rs (set rsb))"
  by (metis rdistinct_concat_general rdistinct_set_equality set_append sup_ge2)

lemma subset_distinct_rewrite1:
  shows "set1 \<subseteq> set rsb \<Longrightarrow> rsb @ rs \<leadsto>g* rsb @ (rdistinct rs set1)"
  apply(induct rs arbitrary: rsb)
   apply simp
  apply(case_tac "a \<in> set1")
   apply simp
  
  using gmany_steps_later grewrite_variant1 apply blast
  apply simp
  apply(drule_tac x = "rsb @ [a]" in meta_spec)
  apply(subgoal_tac "set1 \<subseteq> set (rsb @ [a])")
   apply (simp only:)
  apply(subgoal_tac "(rsb @ [a]) @ rdistinct rs set1 \<leadsto>g* (rsb @ [a]) @ rdistinct rs (insert a set1)")
    apply (metis (no_types, opaque_lifting) append.assoc append_Cons append_Nil greal_trans)
  apply (metis append.assoc empty_set grewrite_rdistinct_aux grewrites_append inf_sup_aci(5) insert_is_Un list.simps(15))
  by auto


lemma subset_distinct_rewrite:
  shows "set rsb' \<subseteq> set rsb \<Longrightarrow> rsb @ rs \<leadsto>g* rsb @ (rdistinct rs (set rsb'))"
  by (simp add: subset_distinct_rewrite1)
  


lemma distinct_3list:
  shows "rsb @ (rdistinct rs (set rsb)) @ rsa \<leadsto>g* 
         rsb @ (rdistinct rs (set rsb)) @ (rdistinct rsa (set rs))"
  by (metis append.assoc list_dlist_union set_append subset_distinct_rewrite)
  



lemma grewrites_shape1:
  shows "      RALTS rs \<notin> set rsb \<Longrightarrow>
       rsb @
       RALTS rs #
       rdistinct rsa
        (
          (set rsb)) \<leadsto>g* rsb @
                          rdistinct rs (set rsb) @
                          rdistinct (rflts (rdistinct rsa ( (set rsb \<union> set rs)))) (set rs)"


  apply (subgoal_tac "       rsb @
       RALTS rs #
       rdistinct rsa
        (
          (set rsb))  \<leadsto>g*        rsb @
       rs @
       rdistinct rsa
        (
          (set rsb)) ")
   prefer 2
  using gr_in_rstar grewrite.intros(2) grewrites_append apply presburger
  apply(subgoal_tac "rsb @ rs @ rdistinct rsa (  (set rsb)) \<leadsto>g* rsb @ 
(rdistinct rs (set rsb) @ rdistinct rsa (  (set rsb)))")
  prefer 2
  apply (metis append_assoc grewrites.intros(1) grewritess_concat gstar_rdistinct_general)
  apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct rsa (  (set rsb))
\<leadsto>g*  rsb @ rdistinct rs (set rsb) @ rdistinct rsa (  (set rsb) \<union> (set rs))")
  prefer 2
  apply (smt (verit, best) append.assoc append_assoc boolean_algebra_cancel.sup2 grewrite_rdistinct_aux inf_sup_aci(5) insert_is_Un rdistinct_concat_general rdistinct_set_equality set_append sup.commute sup.right_idem sup_commute)
  apply(subgoal_tac "rdistinct rsa (  (set rsb)  \<union> set rs) \<leadsto>g*
rflts (rdistinct rsa (  (set rsb) \<union> set rs))")
   apply(subgoal_tac "rsb @ (rdistinct rs (set rsb)) @ rflts (rdistinct rsa (  (set rsb) \<union> set rs)) \<leadsto>g* 
rsb @ (rdistinct rs (set rsb)) @ (rdistinct (rflts (rdistinct rsa (  (set rsb) \<union> set rs))) (set rs))")
  apply (smt (verit, ccfv_SIG) Un_insert_left greal_trans grewrites_append)
  using distinct_3list apply presburger
  using flts_gstar apply blast
  done

lemma r_finite1:
  shows "r = RALTS (r # rs) = False"
  apply(induct r)
  apply simp+
   apply (metis list.set_intros(1))
  by blast
  


lemma grewrite_singleton:
  shows "[r] \<leadsto>g r # rs \<Longrightarrow> rs = []"
  apply (induct "[r]" "r # rs" rule: grewrite.induct)
    apply simp
  apply (metis r_finite1)
  using grewrite.simps apply blast
  by simp

lemma impossible_grewrite1:
  shows "\<not>( [RONE] \<leadsto>g [])"
  using grewrite.cases by fastforce


lemma impossible_grewrite2:
  shows "\<not> ([RALTS rs] \<leadsto>g (RALTS rs) # a # rs)"
  using grewrite_singleton by blast

  


lemma wront_sublist_grewrites:
  shows "rs1 @ rs2 \<leadsto>g* rs1 @ rs3 \<Longrightarrow> rs2 \<leadsto>g* rs3"
  apply(induct rs1 arbitrary: rs2 rs3 rule: rev_induct)
   apply simp
  apply(drule_tac x = "[x] @ rs2" in meta_spec)
  apply(drule_tac x = "[x] @ rs3" in meta_spec)
  apply(simp)

  oops




lemma concat_rdistinct_equality1:
  shows "rdistinct (rs @ rsa) rset = rdistinct rs rset @ rdistinct rsa (rset \<union> (set rs))"
  apply(induct rs arbitrary: rsa rset)
   apply simp
  apply(case_tac "a \<in> rset")
   apply simp
  apply (simp add: insert_absorb)
  by auto

lemma middle_grewrites: 
"rs1 \<leadsto>g* rs2 \<Longrightarrow> rsa @ rs1 @ rsb \<leadsto>g* rsa @ rs2 @ rsb "
  by (simp add: grewritess_concat)

lemma rdistinct_removes_all:
  shows "set rs \<subseteq> rset \<Longrightarrow> rdistinct rs rset = []"
  
  by (metis append.right_neutral rdistinct.simps(1) rdistinct_concat)

lemma ends_removal:
  shows " rsb @ rdistinct rs (set rsb) @ RALTS rs # rsc \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rsc"
  apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ RALTS rs # rsc \<leadsto>g* 
                     rsb @ rdistinct rs (set rsb) @ rs @ rsc")
   apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rs @ rsc \<leadsto>g* 
rsb @ rdistinct rs (set rsb) @ rdistinct rs (set (rsb @ rdistinct rs (set rsb))) @ rsc")
  apply (metis (full_types) append_Nil2 append_eq_appendI greal_trans list_dlist_union rdistinct_removes_all set_append)
   apply (metis append.assoc append_Nil gstar_rdistinct_general middle_grewrites)
  using gr_in_rstar grewrite.intros(2) grewrites_append by presburger

lemma grewrites_rev_append:
  shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rs1 @ [x] \<leadsto>g* rs2 @ [x]"
  using grewritess_concat by auto

lemma grewrites_inclusion:
  shows "set rs \<subseteq> set rs1 \<Longrightarrow> rs1 @ rs \<leadsto>g* rs1"
  apply(induct rs arbitrary: rs1)
  apply simp
  by (meson gmany_steps_later grewrite_variant1 list.set_intros(1) set_subset_Cons subset_code(1))

lemma distinct_keeps_last:
  shows "\<lbrakk>x \<notin> rset; x \<notin> set xs \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]"
  by (simp add: concat_rdistinct_equality1)

lemma grewrites_shape2_aux:
  shows "       RALTS rs \<notin> set rsb \<Longrightarrow>
       rsb @
       rdistinct (rs @ rsa)
        (set rsb) \<leadsto>g* rsb @
                       rdistinct rs (set rsb) @
                       rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
  apply(subgoal_tac " rdistinct (rs @ rsa) (set rsb) =  rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb)")
   apply (simp only:)
  prefer 2
  apply (simp add: Un_commute concat_rdistinct_equality1)
  apply(induct rsa arbitrary: rs rsb rule: rev_induct)
   apply simp
  apply(case_tac "x \<in> set rs")
  apply (simp add: distinct_removes_middle3)
  apply(case_tac "x = RALTS rs")
   apply simp
  apply(case_tac "x \<in> set rsb")
   apply simp
    apply (simp add: concat_rdistinct_equality1)
  apply (simp add: concat_rdistinct_equality1)
  apply simp
  apply(drule_tac x = "rs " in meta_spec)
  apply(drule_tac x = rsb in meta_spec)
  apply simp
  apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (insert (RALTS rs) (set rs \<union> set rsb))")
  prefer 2
   apply (simp add: concat_rdistinct_equality1)
  apply(case_tac "x \<in> set xs")
   apply simp
   apply (simp add: distinct_removes_last2)
  apply(case_tac "x \<in> set rsb")
   apply (smt (verit, ccfv_threshold) Un_iff append.right_neutral concat_rdistinct_equality1 insert_is_Un rdistinct.simps(2))
  apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (set rs \<union> set rsb) = rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x]")
  apply(simp only:)
  apply(case_tac "x = RALTS rs")
    apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x] \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs")
  apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) ")
      apply (smt (verit, ccfv_SIG) Un_insert_left append.right_neutral concat_rdistinct_equality1 greal_trans insert_iff rdistinct.simps(2))
  apply(subgoal_tac "set rs \<subseteq> set ( rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb))")
  apply (metis append.assoc grewrites_inclusion)
     apply (metis Un_upper1 append.assoc dual_order.trans list_dlist_union set_append)
  apply (metis append_Nil2 gr_in_rstar grewrite.intros(2) grewrite_append)
   apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (insert (RALTS rs) (set rs \<union> set rsb)) =  rsb @ rdistinct rs (set rsb) @ rdistinct (xs) (insert (RALTS rs) (set rs \<union> set rsb)) @ [x]")
  apply(simp only:)
  apply (metis append.assoc grewrites_rev_append)
  apply (simp add: insert_absorb)
   apply (simp add: distinct_keeps_last)+
  done

lemma grewrites_shape2:
  shows "       RALTS rs \<notin> set rsb \<Longrightarrow>
       rsb @
       rdistinct (rs @ rsa)
        (set rsb) \<leadsto>g* rflts rsb @
                       rdistinct rs (set rsb) @
                       rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})"
  apply (meson flts_gstar greal_trans grewrites.simps grewrites_shape2_aux grewritess_concat)
  done

lemma rdistinct_add_acc:
  shows "rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)"
  apply(induct rs arbitrary: rsb rset rset2)
   apply simp
  apply (case_tac "a \<in> rset")
   apply simp
  apply(case_tac "a \<in> rset2")
   apply simp
  apply (simp add: more_distinct1)
  apply simp
  apply(drule_tac x = "rsb @ [a]" in meta_spec)
  by (metis Un_insert_left append.assoc append_Cons append_Nil set_append sup.coboundedI1)
  

lemma frewrite_fun1:
  shows "       RALTS rs \<in> set rsb \<Longrightarrow>
       rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)"
  apply(subgoal_tac "rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb)")
   apply(subgoal_tac " set rs \<subseteq> set (rflts rsb)")
  prefer 2
  using spilled_alts_contained apply blast
   apply(subgoal_tac "rflts rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)")
  using greal_trans apply blast
  using rdistinct_add_acc apply presburger
  using flts_gstar grewritess_concat by auto
  




lemma frewrite_rd_grewrites:
  shows "rs1 \<leadsto>f rs2 \<Longrightarrow> 
\<exists>rs3. (rs @ (rdistinct rs1 (set rs)) \<leadsto>g* rs3) \<and> (rs @ (rdistinct rs2 (set rs)) \<leadsto>g* rs3) "
  apply(induct rs1 rs2 arbitrary: rs rule: frewrite.induct)
    apply(rule_tac x = "rsa @ (rdistinct rs ({RZERO} \<union> set rsa))" in exI)
    apply(rule conjI)
  apply(case_tac "RZERO \<in> set rsa")
  apply simp+
  using gstar0 apply fastforce
     apply (simp add: gr_in_rstar grewrite.intros(1) grewrites_append)
    apply (simp add: gstar0)
    prefer 2
    apply(case_tac "r \<in> set rs")
  apply simp
    apply(drule_tac x = "rs @ [r]" in meta_spec)
    apply(erule exE)
    apply(rule_tac x = "rs3" in exI)
   apply simp
  apply(case_tac "RALTS rs \<in> set rsb")
   apply simp
   apply(rule_tac x = "rflts rsb @ rdistinct rsa (set rsb \<union> set rs)" in exI)
   apply(rule conjI)
  using frewrite_fun1 apply force
  apply (metis frewrite_fun1 rdistinct_concat sup_ge2)
  apply(simp)
  apply(rule_tac x = 
 "rflts rsb @
                       rdistinct rs (set rsb) @
                       rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})" in exI)
  apply(rule conjI)
   prefer 2
  using grewrites_shape2 apply force
  using frewrite_rd_grewrites_aux by blast



lemma frewrites_rd_grewrites:
  shows "rs1 \<leadsto>f* rs2 \<Longrightarrow>
rsimp (RALTS rs1) = rsimp (RALTS rs2)"
  apply(induct rs1 rs2 rule: frewrites.induct)
   apply simp
  using frewrite_simpeq by presburger

lemma frewrite_simpeq2:
  shows "rs1 \<leadsto>f rs2 \<Longrightarrow> rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS (rdistinct rs2 {}))"
  apply(subgoal_tac "\<exists> rs3. (rdistinct rs1 {} \<leadsto>g* rs3) \<and> (rdistinct rs2 {} \<leadsto>g* rs3)")
  using grewrites_equal_rsimp apply fastforce
  by (metis append_self_conv2 frewrite_rd_grewrites list.set(1))




(*a more refined notion of \<leadsto>* is needed,
this lemma fails when rs1 contains some RALTS rs where elements
of rs appear in later parts of rs1, which will be picked up by rs2
and deduplicated*)
lemma frewrites_simpeq:
  shows "rs1 \<leadsto>f* rs2 \<Longrightarrow>
 rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS ( rdistinct rs2 {})) "
  apply(induct rs1 rs2 rule: frewrites.induct)
   apply simp
  using frewrite_simpeq2 by presburger


lemma frewrite_single_step:
  shows " rs2 \<leadsto>f rs3 \<Longrightarrow> rsimp (RALTS rs2) = rsimp (RALTS rs3)"
  apply(induct rs2 rs3 rule: frewrite.induct)
    apply simp
  using simp_flatten apply blast
  by (metis (no_types, opaque_lifting) list.simps(9) rsimp.simps(2) simp_flatten2)

lemma frewrites_equivalent_simp:
  shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)"
  apply(induct rs1 rs2 rule: frewrites.induct)
   apply simp
  using frewrite_single_step by presburger

lemma grewrite_simpalts:
  shows " rs2 \<leadsto>g rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)"
  apply(induct rs2 rs3 rule : grewrite.induct)
  using identity_wwo0 apply presburger
  apply (metis frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_flatten)
  apply (smt (verit, ccfv_SIG) gmany_steps_later grewrites.intros(1) grewrites_cons grewrites_equal_rsimp identity_wwo0 rsimp_ALTs.simps(3))
  apply simp
  apply(subst rsimp_alts_equal)
  apply(case_tac "rsa = [] \<and> rsb = [] \<and> rsc = []")
   apply(subgoal_tac "rsa @ a # rsb @ rsc = [a]")
  apply (simp only:)
  apply (metis append_Nil frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_removes_duplicate1(2))
   apply simp
  by (smt (verit, best) append.assoc append_Cons frewrite.intros(1) frewrite_single_step identity_wwo0 in_set_conv_decomp rsimp_ALTs.simps(3) simp_removes_duplicate3)


lemma grewrites_simpalts:
  shows " rs2 \<leadsto>g* rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)"
  apply(induct rs2 rs3 rule: grewrites.induct)
   apply simp
  using grewrite_simpalts by presburger





lemma simp_der_flts:
  shows "rsimp (RALTS (rdistinct (map (rder x) (rflts rs)) {})) = 
         rsimp (RALTS (rdistinct (rflts (map (rder x) rs)) {}))"
  apply(subgoal_tac "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)")
  using frewrites_simpeq apply presburger
  using early_late_der_frewrites by auto

  




 



lemma simp_der_pierce_flts_prelim:
  shows "rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts rs)) {})) 
       = rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) rs)) {}))"
  by (metis append.right_neutral grewrite.intros(2) grewrite_simpalts rsimp_ALTs.simps(2) simp_der_flts)


lemma simp_der_pierce_flts:
  shows " rsimp (
rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})
) =
          rsimp (
rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})
)"
  using simp_der_pierce_flts_prelim by presburger



lemma simp_more_distinct:
  shows "rsimp  (rsimp_ALTs (rsa @ rs)) = rsimp (rsimp_ALTs (rsa @ (rdistinct rs (set rsa)))) "
  oops


lemma non_empty_list:
  shows "a \<in> set as \<Longrightarrow> as \<noteq> []"
  by (metis empty_iff empty_set)

lemma distinct_comp:
  shows "rdistinct (rs1@rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
  apply(induct rs2 arbitrary: rs1)
   apply simp
  apply(subgoal_tac "rs1 @ a # rs2 = (rs1 @ [a]) @ rs2")
   apply(simp only:)
   apply(case_tac "a \<in> set rs1")
    apply simp
  oops

lemma instantiate1:
  shows "\<lbrakk>\<And>ab rset1.  rdistinct (ab # as) rset1 = rdistinct (ab # as @ [ab]) rset1\<rbrakk> \<Longrightarrow>  
rdistinct (aa # as) rset = rdistinct (aa # as @ [aa]) rset"
  apply(drule_tac x = "aa" in meta_spec)
  apply(drule_tac x = "rset" in meta_spec)
  apply simp
  done
  

lemma not_head_elem:
  shows " \<lbrakk>aa \<in> set (a # as); aa \<notin> (set as)\<rbrakk> \<Longrightarrow> a = aa"
  
  by fastforce

(*
  apply simp
  apply (metis append_Cons)
  apply(case_tac "ab \<in> rset1")
  apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left)
  apply(subgoal_tac "rdistinct (ab # (aa # as) @ [ab]) rset1 = 
               ab # (rdistinct ((aa # as) @ [ab]) (insert ab rset1))")
   apply(simp only:)
   apply(subgoal_tac "rdistinct (ab # aa # as) rset1 = ab # (rdistinct (aa # as) (insert ab rset1))")
  apply(simp only:)
    apply(subgoal_tac "rdistinct ((aa # as) @ [ab]) (insert ab rset1) = rdistinct (aa # as) (insert ab rset1)")
  apply blast
*)
  

lemma flts_identity1:
  shows  "rflts (rs @ [RONE]) = rflts rs @ [RONE] "
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp
      apply simp+
  done

lemma flts_identity10:
  shows " rflts (rs @ [RCHAR c]) = rflts rs @ [RCHAR c]"
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp+
  done

lemma flts_identity11:
  shows " rflts (rs @ [RSEQ r1 r2]) = rflts rs @ [RSEQ r1 r2]"
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp+
  done

lemma flts_identity12:
  shows " rflts (rs @ [RSTAR r0]) = rflts rs @ [RSTAR r0]"
  apply(induct rs)
   apply simp+
  apply(case_tac a)
       apply simp+
  done

lemma flts_identity2:
  shows "a \<noteq> RZERO \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow>  rflts (rs @ [a]) = rflts rs @ [a]"
  apply(case_tac a)
       apply simp
  using flts_identity1 apply auto[1]
  using flts_identity10 apply blast
  using flts_identity11 apply auto[1]
   apply blast
  using flts_identity12 by presburger

lemma flts_identity3:
  shows "a = RZERO  \<Longrightarrow> rflts (rs @ [a]) = rflts rs"
  apply simp
  apply(induct rs)
   apply simp+
  apply(case_tac aa)
       apply simp+
  done

lemma distinct_removes_last3:
  shows "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct as {} = rdistinct (as @ [a]) {}"
  by (simp add: distinct_removes_last2)

lemma set_inclusion_with_flts1:
  shows " \<lbrakk>RONE \<in> set rs\<rbrakk> \<Longrightarrow> RONE  \<in> set (rflts rs)"
  apply(induct rs)
   apply simp
  apply(case_tac " RONE \<in> set rs")
   apply simp
  apply (metis Un_upper2 insert_absorb insert_subset list.set_intros(2) rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append)
  apply(case_tac "RONE = a")
   apply simp
  apply simp
  done

lemma set_inclusion_with_flts10:
  shows " \<lbrakk>RCHAR x \<in> set rs\<rbrakk> \<Longrightarrow> RCHAR x  \<in> set (rflts rs)"
  apply(induct rs)
   apply simp
  apply(case_tac " RCHAR x \<in> set rs")
   apply simp
  apply (metis Un_upper2 insert_absorb insert_subset rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append set_subset_Cons)
  apply(case_tac "RCHAR x = a")
   apply simp
  apply fastforce
  apply simp
  done

lemma set_inclusion_with_flts11:
  shows " \<lbrakk>RSEQ r1 r2 \<in> set rs\<rbrakk> \<Longrightarrow> RSEQ r1 r2  \<in> set (rflts rs)"
  apply(induct rs)
   apply simp
  apply(case_tac " RSEQ r1 r2 \<in> set rs")
   apply simp
  apply (metis Un_upper2 insert_absorb insert_subset rflts.simps(2) rflts.simps(3) rflts_def_idiot set_append set_subset_Cons)
  apply(case_tac "RSEQ r1 r2 = a")
   apply simp
  apply fastforce
  apply simp
  done


lemma set_inclusion_with_flts:
  shows " \<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as); rsimp a = RONE\<rbrakk> \<Longrightarrow> rsimp a \<in> set (rflts (map rsimp as))"
  by (simp add: set_inclusion_with_flts1)
  
lemma can_spill_lst:"\<And>x5. \<lbrakk>a \<in> set as; rsimp a \<in> set (map rsimp as); rsimp a = RALTS x5\<rbrakk>
          \<Longrightarrow> rsimp_ALTs (rdistinct (rflts (map rsimp as @ [rsimp a])) {}) = 
rsimp_ALTs (rdistinct (rflts (map rsimp as @ x5)) {})"
  
  using flts_append rflts_spills_last rsimp_inner_idem4 by presburger
  




lemma common_rewrites_equal:
  shows "(rs1 \<leadsto>g* rs3) \<and> (rs2 \<leadsto>g* rs3) \<Longrightarrow> rsimp (rsimp_ALTs rs1 ) = rsimp (rsimp_ALTs rs2)"
  using grewrites_simpalts by force


lemma basic_regex_property1:
  shows "rnullable r \<Longrightarrow> rsimp r \<noteq> RZERO"
  apply(induct r rule: rsimp.induct)
  apply(auto)
  apply (metis idiot idiot2 rrexp.distinct(5))
  by (metis der_simp_nullability rnullable.simps(1) rnullable.simps(4) rsimp.simps(2))


thm rsimp_SEQ.elims


lemma basic_rsimp_SEQ_property2:
  shows "\<lbrakk>r1 \<noteq> RZERO ; r1 \<noteq> RONE; r2 \<noteq> RZERO\<rbrakk> \<Longrightarrow>rsimp_SEQ r1 r2 = RSEQ r1 r2"
  apply(case_tac r1)
       apply simp+
     apply (simp add: idiot2)
  using idiot2 apply blast
  using idiot2 apply auto[1]
  using idiot2 by blast


(*
lemma rderssimp_same_rewrites_rder_induct1:
  shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) ;
 ([rder x (rsimp r2)] \<leadsto>g* rs2) \<and> ([rder x r2] \<leadsto>g* rs2) \<rbrakk> \<Longrightarrow> 
\<exists>rs3. ([rder x (rsimp (RSEQ r1 r2))] \<leadsto>g* rs3) \<and> ([rder x (RSEQ r1 r2)] \<leadsto>g* rs3) "
  sorry

lemma rderssimp_same_rewrites_rder_induct2:
  shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) \<rbrakk> \<Longrightarrow> 
\<exists>rs3. ([rder x (rsimp (RSTAR r1))] \<leadsto>g* rs3) \<and> ([rder x (RSTAR r1)] \<leadsto>g* rs3) "
  sorry

lemma rderssimp_same_rewrites_rder_induct3:
  shows "\<lbrakk> ([rder x (rsimp r1)] \<leadsto>g* rs1) \<and> ([rder x r1] \<leadsto>g* rs1) ;
 ([rder x (rsimp r2)] \<leadsto>g* rs2) \<and> ([rder x r2] \<leadsto>g* rs2) \<rbrakk> \<Longrightarrow> 
\<exists>rs3. ([rder x (rsimp (RALT r1 r2))] \<leadsto>g* rs3) \<and> ([rder x (RALT r1 r2)] \<leadsto>g* rs3) "
  sorry

lemma rderssimp_same_rewrites_rder_induct4:
  shows "\<lbrakk>\<forall>r \<in> set rs. \<exists> rsa. ([rder x (rsimp r)] \<leadsto>g* rsa ) \<and> ([rder x r] \<leadsto>g* rsa) \<rbrakk> \<Longrightarrow> 
\<exists>rsb. ([rder x (rsimp (RALTS rs))]  \<leadsto>g* rsb) \<and> ([rder x (RALTS rs)] \<leadsto>g* rsb) "
  sorry

lemma rderssimp_same_rewrites_rder_base1:
  shows "([rder x (rsimp RONE)] \<leadsto>g* [] ) \<and> ([rder x RONE] \<leadsto>g* [])"
  by (simp add: gr_in_rstar grewrite.intros(1))

lemma rderssimp_same_rewrites_rder_base2:
  shows " ([rder x (rsimp RZERO)] \<leadsto>g* [] ) \<and> ([rder x RZERO] \<leadsto>g* [])"
  using rderssimp_same_rewrites_rder_base1 by auto

lemma rderssimp_same_rewrites_rder_base3:
  shows " ([rder x (rsimp (RCHAR c))] \<leadsto>g* [] ) \<and> ([rder x (RCHAR c)] \<leadsto>g* [])"
  sorry
*)

lemma inside_simp_seq_nullable:
  shows 
"\<And>r1 r2.
       \<lbrakk>rsimp (rder x (rsimp r1)) = rsimp (rder x r1); rsimp (rder x (rsimp r2)) = rsimp (rder x r2);
        rnullable r1\<rbrakk>
       \<Longrightarrow> rsimp (rder x (rsimp_SEQ (rsimp r1) (rsimp r2))) =
           rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp (rder x r1)) (rsimp r2), rsimp (rder x r2)]) {})"
  apply(case_tac "rsimp r1 = RONE")
   apply(simp)
  apply(subst basic_rsimp_SEQ_property1)
   apply (simp add: idem_after_simp1)
  apply(case_tac "rsimp r1 = RZERO")
  
  using basic_regex_property1 apply blast
  apply(case_tac "rsimp r2 = RZERO")
  
  apply (simp add: basic_rsimp_SEQ_property3)
  apply(subst basic_rsimp_SEQ_property2)
     apply simp+
  apply(subgoal_tac "rnullable (rsimp r1)")
   apply simp
  using rsimp_idem apply presburger
  using der_simp_nullability by presburger
  


lemma grewrite_ralts:
  shows "rs \<leadsto>g rs' \<Longrightarrow> RALTS rs \<leadsto>* RALTS rs'"
  by (smt (verit) grewrite_cases_middle hr_in_rstar hrewrite.intros(11) hrewrite.intros(7) hrewrite.intros(8))

lemma grewrites_ralts:
  shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs \<leadsto>* RALTS rs'"
  apply(induct rule: grewrites.induct)
  apply simp
  using grewrite_ralts hreal_trans by blast
  

lemma distinct_grewrites_subgoal1:
  shows "  
       \<lbrakk>rs1 \<leadsto>g* [a]; RALTS rs1 \<leadsto>* a; [a] \<leadsto>g rs3\<rbrakk> \<Longrightarrow> RALTS rs1 \<leadsto>* rsimp_ALTs rs3"
  apply(subgoal_tac "RALTS rs1 \<leadsto>* RALTS rs3")
  apply (metis hrewrite.intros(10) hrewrite.intros(9) rs2 rsimp_ALTs.cases rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))
  apply(subgoal_tac "rs1 \<leadsto>g* rs3")
  using grewrites_ralts apply blast
  using grewrites.intros(2) by presburger






lemma grewrites_ralts_rsimpalts:
  shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs \<leadsto>* rsimp_ALTs rs' "
  apply(induct rs rs' rule: grewrites.induct)
   apply(case_tac rs)
  using hrewrite.intros(9) apply force
   apply(case_tac list)
  apply simp
  using hr_in_rstar hrewrite.intros(10) rsimp_ALTs.simps(2) apply presburger
   apply simp
  apply(case_tac rs2)
   apply simp
   apply (metis grewrite.intros(3) grewrite_singleton rsimp_ALTs.simps(1))
  apply(case_tac list)
   apply(simp)
  using distinct_grewrites_subgoal1 apply blast
  apply simp
  apply(case_tac rs3)
   apply simp
  using grewrites_ralts hrewrite.intros(9) apply blast
  by (metis (no_types, opaque_lifting) grewrite_ralts hr_in_rstar hreal_trans hrewrite.intros(10) neq_Nil_conv rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))

lemma hrewrites_alts:
  shows " r \<leadsto>* r' \<Longrightarrow> (RALTS (rs1 @ [r] @ rs2)) \<leadsto>* (RALTS  (rs1 @ [r'] @ rs2))"
  apply(induct r r' rule: hrewrites.induct)
  apply simp
  using hrewrite.intros(6) by blast

inductive 
  srewritescf:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" (" _ scf\<leadsto>* _" [100, 100] 100)
where
  ss1: "[] scf\<leadsto>* []"
| ss2: "\<lbrakk>r \<leadsto>* r'; rs scf\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (r#rs) scf\<leadsto>* (r'#rs')"


lemma hrewrites_alts_cons:
  shows " RALTS rs \<leadsto>* RALTS rs' \<Longrightarrow> RALTS (r # rs) \<leadsto>* RALTS (r # rs')"


  oops


lemma srewritescf_alt: "rs1 scf\<leadsto>* rs2 \<Longrightarrow> (RALTS (rs@rs1)) \<leadsto>* (RALTS (rs@rs2))"

  apply(induct rs1 rs2 arbitrary: rs rule: srewritescf.induct)
   apply(rule rs1)
  apply(drule_tac x = "rsa@[r']" in meta_spec)
  apply simp
  apply(rule hreal_trans)
   prefer 2
   apply(assumption)
  apply(drule hrewrites_alts)
  by auto


corollary srewritescf_alt1: 
  assumes "rs1 scf\<leadsto>* rs2"
  shows "RALTS rs1 \<leadsto>* RALTS rs2"
  using assms
  by (metis append_Nil srewritescf_alt)




lemma trivialrsimp_srewrites: 
  "\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x \<rbrakk> \<Longrightarrow> rs scf\<leadsto>* (map f rs)"

  apply(induction rs)
   apply simp
   apply(rule ss1)
  by (metis insert_iff list.simps(15) list.simps(9) srewritescf.simps)

lemma hrewrites_list: 
  shows
" (\<And>xa. xa \<in> set x \<Longrightarrow> xa \<leadsto>* rsimp xa) \<Longrightarrow> RALTS x \<leadsto>* RALTS (map rsimp x)"
  apply(induct x)
   apply(simp)+
  by (simp add: srewritescf_alt1 ss2 trivialrsimp_srewrites)
(*  apply(subgoal_tac "RALTS x \<leadsto>* RALTS (map rsimp x)")*)

  
lemma hrewrite_simpeq:
  shows "r1 \<leadsto> r2 \<Longrightarrow> rsimp r1 = rsimp r2"
  apply(induct rule: hrewrite.induct)
            apply simp+
  apply (simp add: basic_rsimp_SEQ_property3)
  apply (simp add: basic_rsimp_SEQ_property1)
  using rsimp.simps(1) apply presburger
        apply simp+
  using flts_middle0 apply force

  
  using simp_flatten3 apply presburger

  apply simp+
  apply (simp add: idem_after_simp1)
  using grewrite.intros(4) grewrite_equal_rsimp by presburger

lemma hrewrites_simpeq:
  shows "r1 \<leadsto>* r2 \<Longrightarrow> rsimp r1 = rsimp r2"
  apply(induct rule: hrewrites.induct)
   apply simp
  apply(subgoal_tac "rsimp r2 = rsimp r3")
   apply auto[1]
  using hrewrite_simpeq by presburger
  


lemma simp_hrewrites:
  shows "r1 \<leadsto>* rsimp r1"
  apply(induct r1)
       apply simp+
    apply(case_tac "rsimp r11 = RONE")
     apply simp
     apply(subst basic_rsimp_SEQ_property1)
  apply(subgoal_tac "RSEQ r11 r12 \<leadsto>* RSEQ RONE r12")
  using hreal_trans hrewrite.intros(3) apply blast
  using hrewrites_seq_context apply presburger
    apply(case_tac "rsimp r11 = RZERO")
     apply simp
  using hrewrite.intros(1) hrewrites_seq_context apply blast
    apply(case_tac "rsimp r12 = RZERO")
     apply simp
  apply(subst basic_rsimp_SEQ_property3)
  apply (meson hrewrite.intros(2) hrewrites.simps hrewrites_seq_context2)
    apply(subst basic_rsimp_SEQ_property2)
       apply simp+
  using hrewrites_seq_contexts apply presburger
   apply simp
   apply(subgoal_tac "RALTS x \<leadsto>* RALTS (map rsimp x)")
  apply(subgoal_tac "RALTS (map rsimp x) \<leadsto>* rsimp_ALTs (rdistinct (rflts (map rsimp x)) {}) ")
  using hreal_trans apply blast
    apply (meson flts_gstar greal_trans grewrites_ralts_rsimpalts gstar_rdistinct)

   apply (simp add: grewrites_ralts hrewrites_list)
  by simp

lemma interleave_aux1:
  shows " RALT (RSEQ RZERO r1) r \<leadsto>*  r"
  apply(subgoal_tac "RSEQ RZERO r1 \<leadsto>* RZERO")
  apply(subgoal_tac "RALT (RSEQ RZERO r1) r \<leadsto>* RALT RZERO r")
  apply (meson grewrite.intros(1) grewrite_ralts hreal_trans hrewrite.intros(10) hrewrites.simps)
  using rs1 srewritescf_alt1 ss1 ss2 apply presburger
  by (simp add: hr_in_rstar hrewrite.intros(1))



lemma rnullable_hrewrite:
  shows "r1 \<leadsto> r2 \<Longrightarrow> rnullable r1 = rnullable r2"
  apply(induct rule: hrewrite.induct)
            apply simp+
     apply blast
    apply simp+
  done


lemma interleave1:
  shows "r \<leadsto> r' \<Longrightarrow> rder c r \<leadsto>* rder c r'"
  apply(induct r r' rule: hrewrite.induct)
            apply (simp add: hr_in_rstar hrewrite.intros(1))
  apply (metis (no_types, lifting) basic_rsimp_SEQ_property3 list.simps(8) list.simps(9) rder.simps(1) rder.simps(5) rdistinct.simps(1) rflts.simps(1) rflts.simps(2) rsimp.simps(1) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) simp_hrewrites)
          apply simp
          apply(subst interleave_aux1)
          apply simp
         apply(case_tac "rnullable r1")
          apply simp
  
          apply (simp add: hrewrites_seq_context rnullable_hrewrite srewritescf_alt1 ss1 ss2)
  
         apply (simp add: hrewrites_seq_context rnullable_hrewrite)
        apply(case_tac "rnullable r1")
  apply simp
  
  using hr_in_rstar hrewrites_seq_context2 srewritescf_alt1 ss1 ss2 apply presburger
  apply simp
  using hr_in_rstar hrewrites_seq_context2 apply blast
       apply simp
  
  using hrewrites_alts apply auto[1]
  apply simp
  using grewrite.intros(1) grewrite_append grewrite_ralts apply auto[1]
  apply simp
  apply (simp add: grewrite.intros(2) grewrite_append grewrite_ralts)
  apply (simp add: hr_in_rstar hrewrite.intros(9))
   apply (simp add: hr_in_rstar hrewrite.intros(10))
  apply simp
  using hrewrite.intros(11) by auto

lemma interleave_star1:
  shows "r \<leadsto>* r' \<Longrightarrow> rder c r \<leadsto>* rder c r'"
  apply(induct rule : hrewrites.induct)
   apply simp
  by (meson hreal_trans interleave1)



lemma inside_simp_removal:
  shows " rsimp (rder x (rsimp r)) = rsimp (rder x r)"
  apply(induct r)
       apply simp+
    apply(case_tac "rnullable r1")
     apply simp
  
  using inside_simp_seq_nullable apply blast
    apply simp
  apply (smt (verit, del_insts) basic_rsimp_SEQ_property2 basic_rsimp_SEQ_property3 der_simp_nullability rder.simps(1) rder.simps(5) rnullable.simps(2) rsimp.simps(1) rsimp_SEQ.simps(1) rsimp_idem)
   apply(subgoal_tac "rder x (RALTS xa) \<leadsto>* rder x (rsimp (RALTS xa))")
  using hrewrites_simpeq apply presburger
  using interleave_star1 simp_hrewrites apply presburger
  by simp
  



lemma rders_simp_same_simpders:
  shows "s \<noteq> [] \<Longrightarrow> rders_simp r s = rsimp (rders r s)"
  apply(induct s rule: rev_induct)
   apply simp
  apply(case_tac "xs = []")
   apply simp
  apply(simp add: rders_append rders_simp_append)
  using inside_simp_removal by blast




lemma distinct_der:
  shows "rsimp (rsimp_ALTs (map (rder x) (rdistinct rs {}))) = 
         rsimp (rsimp_ALTs (rdistinct (map (rder x) rs) {}))"
  by (metis grewrites_simpalts gstar_rdistinct inside_simp_removal rder_rsimp_ALTs_commute)


  


lemma rders_simp_lambda:
  shows " rsimp \<circ> rder x \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r (xs @ [x]))"
  using rders_simp_append by auto

lemma rders_simp_nonempty_simped:
  shows "xs \<noteq> [] \<Longrightarrow> rsimp \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r xs)"
  using rders_simp_same_simpders rsimp_idem by auto

lemma repeated_altssimp:
  shows "\<forall>r \<in> set rs. rsimp r = r \<Longrightarrow> rsimp (rsimp_ALTs (rdistinct (rflts rs) {})) =
           rsimp_ALTs (rdistinct (rflts rs) {})"
  by (metis map_idI rsimp.simps(2) rsimp_idem)


lemma add0_isomorphic:
  shows "rsimp_ALTs (rdistinct (rflts [rsimp r, RZERO]) {}) = rsimp r"
  by (metis append.left_neutral append_Cons flts_removes0 idem_after_simp1)




lemma alts_closed_form: shows 
"rsimp (rders_simp (RALTS rs) s) = 
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
  apply(induct s rule: rev_induct)
   apply simp
  apply simp
  apply(subst rders_simp_append)
  apply(subgoal_tac " rsimp (rders_simp (rders_simp (RALTS rs) xs) [x]) = 
 rsimp(rders_simp (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})) [x])")
   prefer 2
  apply (metis inside_simp_removal rders_simp_one_char)
  apply(simp only: )
  apply(subst rders_simp_one_char)
  apply(subst rsimp_idem)
  apply(subgoal_tac "rsimp (rder x (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {}))) =
                     rsimp ((rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))) ")
  prefer 2
  using rder_rsimp_ALTs_commute apply presburger
  apply(simp only:)
  apply(subgoal_tac "rsimp (rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))
= rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
   prefer 2
  
  using distinct_der apply presburger
  apply(simp only:)
  apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) =
                      rsimp (rsimp_ALTs (rdistinct ( (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)))) {}))")
   apply(simp only:)
  apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) = 
                      rsimp (rsimp_ALTs (rdistinct (rflts ( (map (rsimp \<circ> (rder x) \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))")
    apply(simp only:)
  apply(subst rders_simp_lambda)
    apply(subst rders_simp_nonempty_simped)
     apply simp
    apply(subgoal_tac "\<forall>r \<in> set  (map (\<lambda>r. rders_simp r (xs @ [x])) rs). rsimp r = r")
  prefer 2
     apply (simp add: rders_simp_same_simpders rsimp_idem)
    apply(subst repeated_altssimp)
     apply simp
  apply fastforce
   apply (metis inside_simp_removal list.map_comp rder.simps(4) rsimp.simps(2) rsimp_idem)
  using simp_der_pierce_flts by blast

lemma alts_closed_form_variant: shows 
"s \<noteq> [] \<Longrightarrow> rders_simp (RALTS rs) s = 
rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))"
  by (metis alts_closed_form comp_apply rders_simp_nonempty_simped)

thm vsuf.simps



lemma rsimp_seq_equal1:
  shows "rsimp_SEQ (rsimp r1) (rsimp r2) = rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp r1) (rsimp r2)]) {})"
  by (metis idem_after_simp1 rsimp.simps(1))





fun sflat_aux :: "rrexp  \<Rightarrow> rrexp list " where
  "sflat_aux (RALTS (r # rs)) = sflat_aux r @ rs"
| "sflat_aux (RALTS []) = []"
| "sflat_aux r = [r]"


fun sflat :: "rrexp \<Rightarrow> rrexp" where
  "sflat (RALTS (r # [])) = r"
| "sflat (RALTS (r # rs)) = RALTS (sflat_aux r @ rs)"
| "sflat r = r"

inductive created_by_seq:: "rrexp \<Rightarrow> bool" where
  "created_by_seq (RSEQ r1 r2) "
| "created_by_seq r1 \<Longrightarrow> created_by_seq (RALT r1 r2)"

(*Why \<and> rnullable case would be provable.....?*)
lemma seq_der_shape:
  shows "\<forall>r1 r2. \<exists>r3 r4. (rder c (RSEQ r1 r2) = RSEQ r3 r4 \<or> rder c (RSEQ r1 r2) = RALT r3 r4)"
  by (meson rder.simps(5))

lemma alt_der_shape:
  shows "\<forall>rs. \<exists> rs'. (rder c (RALTS rs)) = RALTS (map (rder c) rs)"
  by force

lemma seq_ders_shape1:
  shows "\<forall>r1 r2. \<exists>r3 r4. (rders (RSEQ r1 r2) s) = RSEQ r3 r4 \<or> (rders (RSEQ r1 r2) s) = RALT r3 r4"
  apply(induct s rule: rev_induct)
   apply auto[1]
  apply(rule allI)+
  apply(subst rders_append)+
  apply(subgoal_tac " \<exists>r3 r4. rders (RSEQ r1 r2) xs = RSEQ r3 r4 \<or> rders (RSEQ r1 r2) xs = RALT r3 r4 ")
   apply(erule exE)+
   apply(erule disjE)
    apply simp+
  done


lemma seq_ders_shape2:
  shows "rders (RSEQ r1 r2) s = RALTS (ra # rb # rs) \<Longrightarrow> rs = []"
  using seq_ders_shape1
  by (metis list.inject rrexp.distinct(25) rrexp.inject(3))

lemma created_by_seq_der:
  shows "created_by_seq r \<Longrightarrow> created_by_seq (rder c r)"
  apply(induct r)
  apply simp+
  
  using created_by_seq.cases apply blast
  
  apply (meson created_by_seq.cases rrexp.distinct(19) rrexp.distinct(21))
  apply (metis created_by_seq.simps rder.simps(5))
   apply (smt (verit, ccfv_threshold) created_by_seq.simps list.set_intros(1) list.simps(8) list.simps(9) rder.simps(4) rrexp.distinct(25) rrexp.inject(3))
  using created_by_seq.intros(1) by force

lemma createdbyseq_left_creatable:
  shows "created_by_seq (RALT r1 r2) \<Longrightarrow> created_by_seq r1"
  using created_by_seq.cases by blast



lemma recursively_derseq:
  shows " created_by_seq (rders (RSEQ r1 r2) s)"
  apply(induct s rule: rev_induct)
   apply simp
  using created_by_seq.intros(1) apply force
  apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) (xs @ [x]))")
  apply blast
  apply(subst rders_append)
  apply(subgoal_tac "\<exists>r3 r4. rders (RSEQ r1 r2) xs = RSEQ r3 r4 \<or> 
                    rders (RSEQ r1 r2) xs = RALT r3 r4")
   prefer 2
  using seq_ders_shape1 apply presburger
  apply(erule exE)+
  apply(erule disjE)
   apply(subgoal_tac "created_by_seq (rders (RSEQ r3 r4) [x])")
    apply presburger
  apply simp
  using created_by_seq.intros(1) created_by_seq.intros(2) apply presburger
  apply simp
  apply(subgoal_tac "created_by_seq r3")
  prefer 2
  using createdbyseq_left_creatable apply blast
  using created_by_seq.intros(2) created_by_seq_der by blast

  
lemma recursively_derseq1:
  shows "r = rders (RSEQ r1 r2) s \<Longrightarrow> created_by_seq r"
  using recursively_derseq by blast

lemma recursively_derseq2:
  shows "r = rders (RSEQ r1 r2) s \<Longrightarrow> \<exists>r1 r2. r = RSEQ r1 r2 \<or> (r = RALT r1 r2 \<and> created_by_seq r1) "
  by (meson created_by_seq.cases recursively_derseq)

lemma recursively_derseq3:
  shows "created_by_seq r \<Longrightarrow> \<exists>r1 r2. r = RSEQ r1 r2 \<or> (r = RALT r1 r2 \<and> created_by_seq r1) "
  by (meson created_by_seq.cases recursively_derseq)

lemma createdbyseq_prop1:
  shows "created_by_seq (RALTS xs) \<Longrightarrow> \<exists> ra rb. xs = [ra, rb]"
  by (metis created_by_seq.cases rrexp.inject(3) rrexp.simps(30))


lemma sfau_head:
  shows " created_by_seq r \<Longrightarrow> \<exists>ra rb rs. sflat_aux r = RSEQ ra rb # rs"
  apply(induction r rule: created_by_seq.induct)
  apply simp
  by fastforce




lemma sfaux_eq10:
  shows "created_by_seq r3 \<Longrightarrow> 
rs \<noteq> [] \<Longrightarrow> sflat (RALTS ((map (rder c) (sflat_aux r3)) @ (map (rder c) rs))) = 
RALTS (sflat_aux (rder c r3) @ (map (rder c ) rs) )"
  apply(induction r3 arbitrary: rs rule: created_by_seq.induct)
   apply simp
   apply(case_tac "rnullable r1")
    apply simp
  
  apply (metis append_Cons list.exhaust map_is_Nil_conv self_append_conv2 sflat.simps(2) sflat_aux.simps(1) sflat_aux.simps(6))
   apply simp
  
  apply (metis Nil_is_map_conv append_Cons append_Nil list.exhaust sflat.simps(2) sflat_aux.simps(6))
  apply simp
  by force

lemma sfaux_keeps_tail:
  shows "created_by_seq r3 \<Longrightarrow>  
         sflat_aux (RALTS (map (rder c) (sflat_aux r3) @ xs )) = 
         sflat_aux (RALTS (map (rder c) (sflat_aux r3))) @ xs  "
  using sfau_head by fastforce




lemma sfaux_eq00:
  shows "created_by_seq r3 \<Longrightarrow> 
 sflat_aux (RALTS ((map (rder c) (sflat_aux r3)) @ (map (rder c) rs))) = 
 (sflat_aux (rder c r3) @ (map (rder c ) rs) )"
  apply(induct rs rule: rev_induct)
  apply simp
  apply (smt (verit, del_insts) append_Cons created_by_seq.simps list.distinct(1) list.simps(9) map_append rder.simps(4) rrexp.inject(3) self_append_conv self_append_conv2 sfau_head sfaux_eq10 sflat_aux.simps(1) sflat_aux.simps(6))
  apply simp
  apply(subst sfaux_keeps_tail)
   apply simp
  apply(subst (asm) sfaux_keeps_tail)
  apply simp+
  done


lemma sfaux_eq1:
  shows "created_by_seq r3 \<Longrightarrow> sflat (RALTS ((map (rder c) (sflat_aux r3)) @ [rder c r4])) = RALTS (sflat_aux (rder c r3) @ [rder c r4] )"
  by (metis (no_types, lifting) list.distinct(1) list.simps(9) map_append map_concat_cons self_append_conv sfaux_eq10)

lemma sflat_seq_induct:
  shows "sflat (rder c (sflat (rders (RSEQ r1 r2) s) )) = sflat (rders (RSEQ r1 r2) (s @ [c]))"
  apply(subst rders_append)
  apply(case_tac "rders (RSEQ r1 r2) s ")
  prefer 6
       apply simp+
  apply(subgoal_tac "\<exists>r3 r4. x5 = [r3, r4]")
  apply(erule exE)+
   apply(subgoal_tac "sflat (rder c (sflat (RALT r3 r4))) = sflat (RALTS (map (rder c) [r3, r4]))")
    apply meson
   apply simp
  
  apply (metis createdbyseq_left_creatable recursively_derseq sfaux_eq1)
  by (metis created_by_seq.simps recursively_derseq rrexp.distinct(25) rrexp.inject(3))





lemma vsuf_prop1:
  shows "vsuf (xs @ [x]) r = (if (rnullable (rders r xs)) 
                                then [x] # (map (\<lambda>s. s @ [x]) (vsuf xs r) )
                                else (map (\<lambda>s. s @ [x]) (vsuf xs r)) ) 
             "
  apply(induct xs arbitrary: r)
   apply simp
  apply(case_tac "rnullable r")
  apply simp
  apply simp
  done

fun  breakHead :: "rrexp list \<Rightarrow> rrexp list" where
  "breakHead [] = [] "
| "breakHead (RALT r1 r2 # rs) = r1 # r2 # rs"
| "breakHead (r # rs) = r # rs"


lemma sfau_idem_der:
  shows "created_by_seq r \<Longrightarrow> sflat_aux (rder c r) = breakHead (map (rder c) (sflat_aux r))"
  apply(induct rule: created_by_seq.induct)
   apply simp+
  using sfau_head by fastforce

lemma vsuf_compose1:
  shows " \<not> rnullable (rders r1 xs)
       \<Longrightarrow> map (rder x \<circ> rders r2) (vsuf xs r1) = map (rders r2) (vsuf (xs @ [x]) r1)"
  apply(subst vsuf_prop1)
  apply simp
  by (simp add: rders_append)
  



lemma seq_sfau0:
  shows  "sflat_aux (rders (RSEQ r1 r2) s) = (RSEQ (rders r1 s) r2) #
                                       (map (rders r2) (vsuf s r1)) "
  apply(induct s rule: rev_induct)
   apply simp
  apply(subst rders_append)+
  apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) xs)")
  prefer 2
  using recursively_derseq1 apply blast
  apply simp
  apply(subst sfau_idem_der)
  
   apply blast
  apply(case_tac "rnullable (rders r1 xs)")
   apply simp
   apply(subst vsuf_prop1)
  apply simp
  apply (simp add: rders_append)
  apply simp
  using vsuf_compose1 by blast









thm sflat.elims





lemma sflat_rsimpeq:
  shows "created_by_seq r1 \<Longrightarrow> sflat_aux r1 =  rs \<Longrightarrow> rsimp r1 = rsimp (RALTS rs)"
  apply(induct r1 arbitrary: rs rule:  created_by_seq.induct)
   apply simp
  using rsimp_seq_equal1 apply force
  by (metis head_one_more_simp rsimp.simps(2) sflat_aux.simps(1) simp_flatten)



lemma seq_closed_form_general:
  shows "rsimp (rders (RSEQ r1 r2) s) = 
rsimp ( (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1))))))"
  apply(case_tac "s \<noteq> []")
  apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) s)")
  apply(subgoal_tac "sflat_aux (rders (RSEQ r1 r2) s) = RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1))")
  using sflat_rsimpeq apply blast
    apply (simp add: seq_sfau0)
  using recursively_derseq1 apply blast
  apply simp
  by (metis idem_after_simp1 rsimp.simps(1))
  


lemma seq_closed_form_aux1:
  shows "rsimp ( (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1)))))) =
rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1))))))"
  by (smt (verit, best) list.simps(9) rders.simps(1) rders_simp.simps(1) rders_simp_same_simpders rsimp.simps(1) rsimp.simps(2) rsimp_idem)

lemma add_simp_to_rest:
  shows "rsimp (RALTS (r # rs)) = rsimp (RALTS (r # map rsimp rs))"
  by (metis append_Nil2 grewrite.intros(2) grewrite_simpalts head_one_more_simp list.simps(9) rsimp_ALTs.simps(2) spawn_simp_rsimpalts)

lemma rsimp_compose_der:
  shows "map rsimp (map (rders r) ss) = map (\<lambda>s. rsimp (rders r s)) ss"
  apply simp
  done

lemma rsimp_compose_der2:
  shows "\<forall>s \<in> set ss. s \<noteq> [] \<Longrightarrow> map rsimp (map (rders r) ss) = map (\<lambda>s.  (rders_simp r s)) ss"  
  by (simp add: rders_simp_same_simpders)

lemma vsuf_nonempty:
  shows "\<forall>s \<in> set ( vsuf s1 r). s \<noteq> []"
  apply(induct s1 arbitrary: r)
   apply simp
  apply simp
  done

lemma rsimp_compose_der3:
  shows " map rsimp (map (rders r) (vsuf s1 r')) = map (\<lambda>s. rsimp  (rders_simp r s)) (vsuf s1 r')"  
  by (simp add: rders_simp_same_simpders rsimp_idem vsuf_nonempty)

thm rders_simp_same_simpders



lemma seq_closed_form_aux2:
  shows "s \<noteq> [] \<Longrightarrow> rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1)))))) = 
         rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders_simp r2) (vsuf s r1))))))"
  
  by (metis add_simp_to_rest rsimp_compose_der2 vsuf_nonempty)
  

lemma seq_closed_form: shows 
"rsimp (rders_simp (RSEQ r1 r2) s) = 
rsimp ( RALTS ( (RSEQ (rders_simp r1 s) r2) # 
                (map (rders_simp r2) (vsuf s r1)) 
              )  
      )"
  apply(case_tac s )
   apply simp  
  apply (metis idem_after_simp1 rsimp.simps(1))
  apply(subgoal_tac " s \<noteq> []")
  using rders_simp_same_simpders rsimp_idem seq_closed_form_aux1 seq_closed_form_aux2 seq_closed_form_general apply presburger
  by fastforce
  




lemma seq_closed_form_variant: shows
"s \<noteq> [] \<Longrightarrow> (rders_simp (RSEQ r1 r2) s) = 
rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))"
  apply(induct s rule: rev_induct)
   apply simp
  apply(subst rders_simp_append)
  apply(subst rders_simp_one_char)
  apply(subst rsimp_idem[symmetric])
  apply(subst rders_simp_one_char[symmetric])
  apply(subst rders_simp_append[symmetric])
  apply(insert seq_closed_form)
  apply(subgoal_tac "rsimp (rders_simp (RSEQ r1 r2) (xs @ [x]))
 = rsimp (RALTS (RSEQ (rders_simp r1 (xs @ [x])) r2 # map (rders_simp r2) (vsuf (xs @ [x]) r1)))")
   apply force
  by presburger


lemma star_closed_form_seq1:
  shows "sflat_aux (rders (RSTAR r0) (c # s)) = 
   RSEQ (rders (rder c r0) s) (RSTAR r0) #
                                       map (rders (RSTAR r0)) (vsuf s (rder c r0))"
  apply simp
  using seq_sfau0 by blast

fun hflat_aux :: "rrexp \<Rightarrow> rrexp list" where
  "hflat_aux (RALT r1 r2) = hflat_aux r1 @ hflat_aux r2"
| "hflat_aux r = [r]"


fun hflat :: "rrexp \<Rightarrow> rrexp" where
  "hflat (RALT r1 r2) = RALTS ((hflat_aux r1) @ (hflat_aux r2))"
| "hflat r = r"

inductive created_by_star :: "rrexp \<Rightarrow> bool" where
  "created_by_star (RSEQ ra (RSTAR rb))"
| "\<lbrakk>created_by_star r1; created_by_star r2\<rbrakk> \<Longrightarrow> created_by_star (RALT r1 r2)"

fun hElem :: "rrexp  \<Rightarrow> rrexp list" where
  "hElem (RALT r1 r2) = (hElem r1 ) @ (hElem r2)"
| "hElem r = [r]"




lemma cbs_ders_cbs:
  shows "created_by_star r \<Longrightarrow> created_by_star (rder c r)"
  apply(induct r rule: created_by_star.induct)
   apply simp
  using created_by_star.intros(1) created_by_star.intros(2) apply auto[1]
  by (metis (mono_tags, lifting) created_by_star.simps list.simps(8) list.simps(9) rder.simps(4))

lemma star_ders_cbs:
  shows "created_by_star (rders (RSEQ r1 (RSTAR r2)) s)"
  apply(induct s rule: rev_induct)
   apply simp
   apply (simp add: created_by_star.intros(1))
  apply(subst rders_append)
  apply simp
  using cbs_ders_cbs by auto

lemma created_by_star_cases:
  shows "created_by_star r \<Longrightarrow> \<exists>ra rb. (r = RALT ra rb \<and> created_by_star ra \<and> created_by_star rb) \<or> r = RSEQ ra rb "
  by (meson created_by_star.cases)



lemma hfau_pushin: 
  shows "created_by_star r \<Longrightarrow> hflat_aux (rder c r) = concat (map hElem (map (rder c) (hflat_aux r)))"
  apply(induct r rule: created_by_star.induct)
   apply simp
  apply(subgoal_tac "created_by_star (rder c r1)")
  prefer 2
  apply(subgoal_tac "created_by_star (rder c r2)")
  using cbs_ders_cbs apply blast
  using cbs_ders_cbs apply auto[1]
  apply simp
  done

lemma stupdate_induct1:
  shows " concat (map (hElem \<circ> (rder x \<circ> (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)))) Ss) =
          map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_update x r0 Ss)"
  apply(induct Ss)
   apply simp+
  by (simp add: rders_append)
  


lemma stupdates_join_general:
  shows  "concat (map hElem (map (rder x) (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 Ss)))) =
           map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates (xs @ [x]) r0 Ss)"
  apply(induct xs arbitrary: Ss)
   apply (simp)
  prefer 2
   apply auto[1]
  using stupdate_induct1 by blast



 
lemma stupdates_join:
  shows "concat (map hElem (map (rder x) (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 [[c]])))) =
           map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates (xs @ [x]) r0 [[c]])"
  using stupdates_join_general by auto
  


lemma star_hfau_induct:
  shows "hflat_aux (rders (RSEQ (rder c r0) (RSTAR r0)) s) =   
      map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates s r0 [[c]])"
  apply(induct s rule: rev_induct)
   apply simp
  apply(subst rders_append)+
  apply simp
  apply(subst stupdates_append)
  apply(subgoal_tac "created_by_star (rders (RSEQ (rder c r0) (RSTAR r0)) xs)")
  prefer 2
  apply (simp add: star_ders_cbs)
  apply(subst hfau_pushin)
   apply simp
  apply(subgoal_tac "concat (map hElem (map (rder x) (hflat_aux (rders (RSEQ (rder c r0) (RSTAR r0)) xs)))) =
                     concat (map hElem (map (rder x) ( map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 [[c]])))) ")
   apply(simp only:)
  prefer 2
   apply presburger
  apply(subst stupdates_append[symmetric])
  using stupdates_join_general by blast

lemma starders_hfau_also1:
  shows "hflat_aux (rders (RSTAR r) (c # xs)) = map (\<lambda>s1. RSEQ (rders r s1) (RSTAR r)) (star_updates xs r [[c]])"
  using star_hfau_induct by force

lemma hflat_aux_grewrites:
  shows "a # rs \<leadsto>g* hflat_aux a @ rs"
  apply(induct a arbitrary: rs)
       apply simp+
   apply(case_tac x)
    apply simp
  apply(case_tac list)
  
  apply (metis append.right_neutral append_Cons append_eq_append_conv2 grewrites.simps hflat_aux.simps(7) same_append_eq)
   apply(case_tac lista)
  apply simp
  apply (metis (no_types, lifting) append_Cons append_eq_append_conv2 gmany_steps_later greal_trans grewrite.intros(2) grewrites_append self_append_conv)
  apply simp
  by simp
  



lemma cbs_hfau_rsimpeq1:
  shows "rsimp (RALT a b) = rsimp (RALTS ((hflat_aux a) @ (hflat_aux b)))"
  apply(subgoal_tac "[a, b] \<leadsto>g* hflat_aux a @ hflat_aux b")
  using grewrites_equal_rsimp apply presburger
  by (metis append.right_neutral greal_trans grewrites_cons hflat_aux_grewrites)


lemma hfau_rsimpeq2:
  shows "created_by_star r \<Longrightarrow> rsimp r = rsimp ( (RALTS (hflat_aux r)))"
  apply(induct r)
       apply simp+
  
    apply (metis rsimp_seq_equal1)
  prefer 2
   apply simp
  apply(case_tac x)
   apply simp
  apply(case_tac "list")
   apply simp
  
  apply (metis idem_after_simp1)
  apply(case_tac "lista")
  prefer 2
   apply (metis hflat_aux.simps(8) idem_after_simp1 list.simps(8) list.simps(9) rsimp.simps(2))
  apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux (RALT a aa)))")
  apply simp
  apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux a @ hflat_aux aa))")
  using hflat_aux.simps(1) apply presburger
  apply simp
  using cbs_hfau_rsimpeq1 by fastforce


lemma hfau_rsimpeq1:
  shows "created_by_star r \<Longrightarrow> hflat_aux r = rs \<Longrightarrow> rsimp r = rsimp (RALTS rs)"
  apply(induct r arbitrary: rs rule: created_by_star.induct )
  apply (metis created_by_seq.intros(1) hflat_aux.simps(5) sflat_aux.simps(6) sflat_rsimpeq)
  apply simp
  oops






lemma star_closed_form1:
  shows "rsimp (rders (RSTAR r0) (c#s)) = 
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
  using hfau_rsimpeq2 rder.simps(6) rders.simps(2) star_ders_cbs starders_hfau_also1 by presburger

lemma star_closed_form2:
  shows  "rsimp (rders_simp (RSTAR r0) (c#s)) = 
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
  by (metis list.distinct(1) rders_simp_same_simpders rsimp_idem star_closed_form1)

lemma star_closed_form3:
  shows  "rsimp (rders_simp (RSTAR r0) (c#s)) =   (rders_simp (RSTAR r0) (c#s))"
  by (metis list.distinct(1) rders_simp_same_simpders star_closed_form1 star_closed_form2)

lemma star_closed_form4:
  shows " (rders_simp (RSTAR r0) (c#s)) = 
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
  using star_closed_form2 star_closed_form3 by presburger

lemma star_closed_form5:
  shows " rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) Ss         )))) = 
          rsimp ( ( RALTS ( (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss ))))"
  by (metis (mono_tags, lifting) list.map_comp map_eq_conv o_apply rsimp.simps(2) rsimp_idem)

lemma star_closed_form6_hrewrites:
  shows "  
 (map (\<lambda>s1.  (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss )
 scf\<leadsto>*
(map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss )"
  apply(induct Ss)
  apply simp
  apply (simp add: ss1)
  by (metis (no_types, lifting) list.simps(9) rsimp.simps(1) rsimp_idem simp_hrewrites ss2)

lemma star_closed_form6:
  shows " rsimp ( ( RALTS ( (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss )))) = 
          rsimp ( ( RALTS ( (map (\<lambda>s1.  (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss ))))"
  apply(subgoal_tac " map (\<lambda>s1.  (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss  scf\<leadsto>*
                      map (\<lambda>s1.  rsimp (RSEQ  (rders r0 s1) (RSTAR r0)) ) Ss ")
  using hrewrites_simpeq srewritescf_alt1 apply fastforce
  using star_closed_form6_hrewrites by blast

lemma star_closed_form7:
  shows  " (rders_simp (RSTAR r0) (c#s)) = 
rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rsimp (rders r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
  using star_closed_form4 star_closed_form5 star_closed_form6 by presburger

lemma derssimp_nonempty_list:
  shows "\<forall>s \<in> set Ss. s \<noteq> [] \<Longrightarrow> 
 rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rsimp (rders r0 s1)) (RSTAR r0) ) Ss)))) =
 rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) Ss)))) "
  
  by (metis (no_types, lifting) map_eq_conv rders_simp_same_simpders)

lemma stupdate_nonempty:
  shows "\<forall>s \<in> set  Ss. s \<noteq> [] \<Longrightarrow> \<forall>s \<in> set (star_update c r Ss). s \<noteq> []"
  apply(induct Ss)
  apply simp
  apply(case_tac "rnullable (rders r a)")
   apply simp+
  done


lemma stupdates_nonempty:
  shows "\<forall>s \<in> set Ss. s\<noteq> [] \<Longrightarrow> \<forall>s \<in> set (star_updates s r Ss). s \<noteq> []"
  apply(induct s arbitrary: Ss)
   apply simp
  apply simp
  using stupdate_nonempty by presburger




lemma star_closed_form8:
  shows  
"rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rsimp (rders r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))) = 
 rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ ( (rders_simp r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))"
  by (metis derssimp_nonempty_list neq_Nil_conv non_empty_list set_ConsD stupdates_nonempty)



lemma star_closed_form:
  shows "rders_simp (RSTAR r0) (c#s) = 
rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))"
  apply(induct s)
   apply simp
   apply (metis idem_after_simp1 rsimp.simps(1) rsimp.simps(6) rsimp_idem)
  using star_closed_form4 star_closed_form5 star_closed_form6 star_closed_form8 by presburger




end