% Chapter Template
% Main chapter title
\chapter{Correctness of Bit-coded Algorithm without Simplification}
\label{ChapterBitcoded1} % Change X to a consecutive number; for referencing this chapter elsewhere, use \ref{ChapterX}
%Then we illustrate how the algorithm without bitcodes falls short for such aggressive
%simplifications and therefore introduce our version of the bitcoded algorithm and
%its correctness proof in
%Chapter 3\ref{Chapter3}.
%----------------------------------------------------------------------------------------
% SECTION common identities
%----------------------------------------------------------------------------------------
\section{Common Identities In Simplification-Related Functions}
Need to prove these before starting on the big correctness proof.
%-----------------------------------
% SUBSECTION
%-----------------------------------
\subsection{Idempotency of $\simp$}
\begin{equation}
\simp \;r = \simp\; \simp \; r
\end{equation}
This property means we do not have to repeatedly
apply simplification in each step, which justifies
our definition of $\blexersimp$.
It will also be useful in future proofs where properties such as
closed forms are needed.
The proof is by structural induction on $r$.
%-----------------------------------
% SUBSECTION
%-----------------------------------
\subsection{Syntactic Equivalence Under $\simp$}
We prove that minor differences can be annhilated
by $\simp$.
For example,
\begin{center}
$\simp \;(\simpALTs\; (\map \;(\_\backslash \; x)\; (\distinct \; \mathit{rs}\; \phi))) =
\simp \;(\simpALTs \;(\distinct \;(\map \;(\_ \backslash\; x) \; \mathit{rs}) \; \phi))$
\end{center}
%----------------------------------------------------------------------------------------
% SECTION correctness proof
%----------------------------------------------------------------------------------------
\section{Correctness of Bit-coded Algorithm (Without Simplification)}
We now give the proof the correctness of the algorithm with bit-codes.
Ausaf and Urban cleverly defined an auxiliary function called $\flex$,
defined as
\[
\flex \; r \; f \; [] \; v \; = \; f\; v
\flex \; r \; f \; c :: s \; v = \flex r \; \lambda v. \, f (\inj \; r\; c\; v)\; s \; v
\]
which accumulates the characters that needs to be injected back,
and does the injection in a stack-like manner (last taken derivative first injected).
$\flex$ is connected to the $\lexer$:
\begin{lemma}
$\flex \; r \; \textit{id}\; s \; \mkeps (r\backslash s) = \lexer \; r \; s$
\end{lemma}
$\flex$ provides us a bridge between $\lexer$ and $\blexer$.
What is even better about $\flex$ is that it allows us to
directly operate on the value $\mkeps (r\backslash v)$,
which is pivotal in the definition of $\lexer $ and $\blexer$, but not visible as an argument.
When the value created by $\mkeps$ becomes available, one can
prove some stepwise properties of lexing nicely:
\begin{lemma}\label{flexStepwise}
$\textit{flex} \; r \; f \; s@[c] \; v= \flex \; r \; f\; s \; (\inj \; (r\backslash s) \; c \; v) $
\end{lemma}
And for $\blexer$ we have a function with stepwise properties like $\flex$ as well,
called $\retrieve$\ref{retrieveDef}.
$\retrieve$ takes bit-codes from annotated regular expressions
guided by a value.
$\retrieve$ is connected to the $\blexer$ in the following way:
\begin{lemma}\label{blexer_retrieve}
$\blexer \; r \; s = \decode \; (\retrieve \; (\internalise \; r) \; (\mkeps \; (r \backslash s) )) \; r$
\end{lemma}
If you take derivative of an annotated regular expression,
you can $\retrieve$ the same bit-codes as before the derivative took place,
provided that you use the corresponding value:
\begin{lemma}\label{retrieveStepwise}
$\retrieve \; (r \backslash c) \; v= \retrieve \; r \; (\inj \; r\; c\; v)$
\end{lemma}
The other good thing about $\retrieve$ is that it can be connected to $\flex$:
%centralLemma1
\begin{lemma}\label{flex_retrieve}
$\flex \; r \; \textit{id}\; s\; v = \decode \; (\retrieve \; (r\backslash s )\; v) \; r$
\end{lemma}
\begin{proof}
By induction on $s$. The induction tactic is reverse induction on strings.
$v$ is allowed to be arbitrary.
The crucial point is to rewrite
\[
\retrieve \; (r \backslash s@[c]) \; \mkeps (r \backslash s@[c])
\]
as
\[
\retrieve \; (r \backslash s) \; (\inj \; (r \backslash s) \; c\; \mkeps (r \backslash s@[c]))
\].
This enables us to equate
\[
\retrieve \; (r \backslash s@[c]) \; \mkeps (r \backslash s@[c])
\]
with
\[
\flex \; r \; \textit{id} \; s \; (\inj \; (r\backslash s) \; c\; (\mkeps (r\backslash s@[c])))
\],
which in turn can be rewritten as
\[
\flex \; r \; \textit{id} \; s@[c] \; (\mkeps (r\backslash s@[c]))
\].
\end{proof}
With the above lemma we can now link $\flex$ and $\blexer$.
\begin{lemma}\label{flex_blexer}
$\textit{flex} \; r \; \textit{id} \; s \; \mkeps(r \backslash s) = \blexer \; r \; s$
\end{lemma}
\begin{proof}
Using two of the above lemmas: \ref{flex_retrieve} and \ref{blexer_retrieve}.
\end{proof}
Finally