thys/ReStar.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Fri, 11 Mar 2016 00:38:38 +0000
changeset 143 1e7b36450d9a
parent 142 08dcf0d20f15
child 144 b356c7adf61a
permissions -rw-r--r--
updated

   
theory ReStar
  imports "Main" 
begin


section {* Sequential Composition of Languages *}

definition
  Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where 
  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"

text {* Two Simple Properties about Sequential Composition *}

lemma seq_empty [simp]:
  shows "A ;; {[]} = A"
  and   "{[]} ;; A = A"
by (simp_all add: Sequ_def)

lemma seq_null [simp]:
  shows "A ;; {} = {}"
  and   "{} ;; A = {}"
by (simp_all add: Sequ_def)


section {* Semantic Derivative of Languages *}

definition
  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
where
  "Der c A \<equiv> {s. c # s \<in> A}"

lemma Der_null [simp]:
  shows "Der c {} = {}"
unfolding Der_def
by auto

lemma Der_empty [simp]:
  shows "Der c {[]} = {}"
unfolding Der_def
by auto

lemma Der_char [simp]:
  shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto

lemma Der_union [simp]:
  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto

lemma Der_Sequ [simp]:
  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
unfolding Der_def Sequ_def
by (auto simp add: Cons_eq_append_conv)


section {* Kleene Star for Languages *}

inductive_set
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
  for A :: "string set"
where
  start[intro]: "[] \<in> A\<star>"
| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"

lemma star_cases:
  shows "A\<star> = {[]} \<union> A ;; A\<star>"
unfolding Sequ_def
by (auto) (metis Star.simps)

lemma star_decomp: 
  assumes a: "c # x \<in> A\<star>" 
  shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
using a
by (induct x\<equiv>"c # x" rule: Star.induct) 
   (auto simp add: append_eq_Cons_conv)

lemma Der_star [simp]:
  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -    
  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
    by (simp only: star_cases[symmetric])
  also have "... = Der c (A ;; A\<star>)"
    by (simp only: Der_union Der_empty) (simp)
  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
    by simp
  also have "... =  (Der c A) ;; A\<star>"
    unfolding Sequ_def Der_def
    by (auto dest: star_decomp)
  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
qed


section {* Regular Expressions *}

datatype rexp =
  ZERO
| ONE
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

section {* Semantics of Regular Expressions *}
 
fun
  L :: "rexp \<Rightarrow> string set"
where
  "L (ZERO) = {}"
| "L (ONE) = {[]}"
| "L (CHAR c) = {[c]}"
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
| "L (STAR r) = (L r)\<star>"


section {* Nullable, Derivatives *}

fun
 nullable :: "rexp \<Rightarrow> bool"
where
  "nullable (ZERO) = False"
| "nullable (ONE) = True"
| "nullable (CHAR c) = False"
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"


fun
 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
  "der c (ZERO) = ZERO"
| "der c (ONE) = ZERO"
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) = 
     (if nullable r1
      then ALT (SEQ (der c r1) r2) (der c r2)
      else SEQ (der c r1) r2)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"

fun 
 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
  "ders [] r = r"
| "ders (c # s) r = ders s (der c r)"


lemma nullable_correctness:
  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
by (induct r) (auto simp add: Sequ_def) 


lemma der_correctness:
  shows "L (der c r) = Der c (L r)"
by (induct r) (simp_all add: nullable_correctness)


section {* Values *}

datatype val = 
  Void
| Char char
| Seq val val
| Right val
| Left val
| Stars "val list"

datatype_compat val


section {* The string behind a value *}

fun 
  flat :: "val \<Rightarrow> string"
where
  "flat (Void) = []"
| "flat (Char c) = [c]"
| "flat (Left v) = flat v"
| "flat (Right v) = flat v"
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
| "flat (Stars []) = []"
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 

lemma flat_Stars [simp]:
 "flat (Stars vs) = concat (map flat vs)"
by (induct vs) (auto)


section {* Relation between values and regular expressions *}

inductive 
  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
where
 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
| "\<turnstile> Void : ONE"
| "\<turnstile> Char c : CHAR c"
| "\<turnstile> Stars [] : STAR r"
| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"

inductive_cases Prf_elims:
  "\<turnstile> v : ZERO"
  "\<turnstile> v : SEQ r1 r2"
  "\<turnstile> v : ALT r1 r2"
  "\<turnstile> v : ONE"
  "\<turnstile> v : CHAR c"
(*  "\<turnstile> vs : STAR r"*)



lemma Prf_flat_L:
  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
using assms
apply(induct v r rule: Prf.induct)
apply(auto simp add: Sequ_def)
done

lemma Prf_Stars:
  assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
  shows "\<turnstile> Stars vs : STAR r"
using assms
apply(induct vs)
apply (metis Prf.intros(6))
by (metis Prf.intros(7) insert_iff set_simps(2))

lemma Star_string:
  assumes "s \<in> A\<star>"
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
using assms
apply(induct rule: Star.induct)
apply(auto)
apply(rule_tac x="[]" in exI)
apply(simp)
apply(rule_tac x="s1#ss" in exI)
apply(simp)
done


lemma Star_val:
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
using assms
apply(induct ss)
apply(auto)
apply (metis empty_iff list.set(1))
by (metis concat.simps(2) list.simps(9) set_ConsD)


lemma L_flat_Prf:
  "L(r) = {flat v | v. \<turnstile> v : r}"
apply(induct r)
apply(auto dest: Prf_flat_L simp add: Sequ_def)
apply (metis Prf.intros(4) flat.simps(1))
apply (metis Prf.intros(5) flat.simps(2))
apply (metis Prf.intros(1) flat.simps(5))
apply (metis Prf.intros(2) flat.simps(3))
apply (metis Prf.intros(3) flat.simps(4))
apply(auto elim!: Prf_elims)
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = x \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
apply(auto)[1]
apply(rule_tac x="Stars vs" in exI)
apply(simp)
apply(rule Prf_Stars)
apply(simp)
apply(drule Star_string)
apply(auto)
apply(rule Star_val)
apply(simp)
done


section {* Sulzmann functions *}

fun 
  mkeps :: "rexp \<Rightarrow> val"
where
  "mkeps(ONE) = Void"
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
| "mkeps(STAR r) = Stars []"

fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
where
  "injval (CHAR d) c Void = Char d"
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 


section {* Matcher *}

fun 
  matcher :: "rexp \<Rightarrow> string \<Rightarrow> val option"
where
  "matcher r [] = (if nullable r then Some(mkeps r) else None)"
| "matcher r (c#s) = (case (matcher (der c r) s) of  
                    None \<Rightarrow> None
                  | Some(v) \<Rightarrow> Some(injval r c v))"


section {* Mkeps, injval *}

lemma mkeps_nullable:
  assumes "nullable(r)" 
  shows "\<turnstile> mkeps r : r"
using assms
by (induct rule: nullable.induct) 
   (auto intro: Prf.intros)

lemma mkeps_flat:
  assumes "nullable(r)" 
  shows "flat (mkeps r) = []"
using assms
by (induct rule: nullable.induct) (auto)


lemma Prf_injval:
  assumes "\<turnstile> v : der c r" 
  shows "\<turnstile> (injval r c v) : r"
using assms
apply(induct r arbitrary: c v rule: rexp.induct)
apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
(* STAR *)
apply(rotate_tac 2)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)
apply (metis Prf.intros(6) Prf.intros(7))
by (metis Prf.intros(7))

lemma Prf_injval_flat:
  assumes "\<turnstile> v : der c r" 
  shows "flat (injval r c v) = c # (flat v)"
using assms
apply(induct arbitrary: v rule: der.induct)
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(case_tac "c = d")
apply(simp)
apply(auto)[1]
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(case_tac "nullable r1")
apply(simp)
apply(erule Prf.cases)
apply(simp_all (no_asm_use))[7]
apply(auto)[1]
apply(erule Prf.cases)
apply(simp_all)[7]
apply(clarify)
apply(simp only: injval.simps flat.simps)
apply(auto)[1]
apply (metis mkeps_flat)
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(simp)
apply(erule Prf.cases)
apply(simp_all)[7]
apply(auto)
apply(rotate_tac 2)
apply(erule Prf.cases)
apply(simp_all)[7]
done



section {* Our Alternative Posix definition *}

inductive 
  PMatch :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
where
  "[] \<in> ONE \<rightarrow> Void"
| "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
| "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
| "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
| "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
| "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
| "[] \<in> STAR r \<rightarrow> Stars []"

inductive_cases PMatch_elims:
  "s \<in> ONE \<rightarrow> v"
  "s \<in> CHAR c \<rightarrow> v"
  "s \<in> ALT r1 r2 \<rightarrow> v"
  "s \<in> SEQ r1 r2 \<rightarrow> v"
  "s \<in> STAR r \<rightarrow> v"

lemma PMatch1:
  assumes "s \<in> r \<rightarrow> v"
  shows "s \<in> L r" "flat v = s"
using assms
by (induct s r v rule: PMatch.induct)
   (auto simp add: Sequ_def)


lemma PMatch1a:
  assumes "s \<in> r \<rightarrow> v"
  shows "\<turnstile> v : r"
using assms
apply(induct s r v rule: PMatch.induct)
apply(auto intro: Prf.intros)
done

lemma PMatch_mkeps:
  assumes "nullable r"
  shows "[] \<in> r \<rightarrow> mkeps r"
using assms
apply(induct r)
apply(auto intro: PMatch.intros simp add: nullable_correctness Sequ_def)
apply(subst append.simps(1)[symmetric])
apply (rule PMatch.intros)
apply(auto)
done


lemma PMatch_determ:
  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
  shows "v1 = v2"
using assms
apply(induct s r v1 arbitrary: v2 rule: PMatch.induct)
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(erule PMatch.cases)
apply(simp_all)[7]
apply(rotate_tac 2)
apply(erule PMatch.cases)
apply(simp_all (no_asm_use))[7]
apply(clarify)
apply(force)
apply(clarify)
apply(drule PMatch1(1))
apply(simp)
apply(rotate_tac 3)
apply(erule PMatch.cases)
apply(simp_all (no_asm_use))[7]
apply(drule PMatch1(1))+
apply(simp)
apply(simp)
apply(rotate_tac 5)
apply(erule PMatch.cases)
apply(simp_all (no_asm_use))[7]
apply(clarify)
apply(subgoal_tac "s1 = s1a")
apply(blast)
apply(simp add: append_eq_append_conv2)
apply(clarify)
apply (metis PMatch1(1) append_self_conv)
apply(rotate_tac 6)
apply(erule PMatch.cases)
apply(simp_all (no_asm_use))[7]
apply(clarify)
apply(subgoal_tac "s1 = s1a")
apply(simp)
apply(blast)
apply(simp  (no_asm_use) add: append_eq_append_conv2)
apply(clarify)
apply (metis L.simps(6) PMatch1(1) append_self_conv)
apply(clarify)
apply(rotate_tac 2)
apply(erule PMatch.cases)
apply(simp_all (no_asm_use))[7]
using PMatch1(2) apply auto[1]
using PMatch1(2) apply blast
apply(erule PMatch.cases)
apply(simp_all (no_asm_use))[7]
apply(clarify)
apply (simp add: PMatch1(2))
apply(simp)
done

(* a proof that does not need proj *)
lemma PMatch2_roy_version:
  assumes "s \<in> (der c r) \<rightarrow> v"
  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
using assms
proof(induct r arbitrary: s v rule: rexp.induct)
  case ZERO
  have "s \<in> der c ZERO \<rightarrow> v" by fact
  then have "s \<in> ZERO \<rightarrow> v" by simp
  then have "False" by cases
  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
next
  case ONE
  have "s \<in> der c ONE \<rightarrow> v" by fact
  then have "s \<in> ZERO \<rightarrow> v" by simp
  then have "False" by cases
  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
next 
  case (CHAR d)
  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
  then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
  proof (cases)
    case eq
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
    then have "s \<in> ONE \<rightarrow> v" using eq by simp
    then have eqs: "s = [] \<and> v = Void" by cases simp
    show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
    by (auto intro: PMatch.intros)
  next
    case ineq
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
    then have "False" by cases
    then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
  qed
next
  case (ALT r1 r2)
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
              by cases auto
  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
  proof (cases)
    case left
    have "s \<in> der c r1 \<rightarrow> v'" by fact
    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: PMatch.intros)
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
  next 
    case right
    have "s \<notin> L (der c r1)" by fact
    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
    moreover 
    have "s \<in> der c r2 \<rightarrow> v'" by fact
    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
      by (auto intro: PMatch.intros)
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
  qed
next
  case (SEQ r1 r2)
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
  then consider 
        (left_nullable) v1 v2 s1 s2 where 
        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
      | (right_nullable) v1 s1 s2 where 
        "v = Right v1" "s = s1 @ s2"  
        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
      | (not_nullable) v1 v2 s1 s2 where
        "v = Seq v1 v2" "s = s1 @ s2" 
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
        by (force split: if_splits elim!: PMatch_elims simp add: Sequ_def der_correctness Der_def)   
  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
    proof (cases)
      case left_nullable
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
      moreover
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac PMatch.intros)
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
    next
      case right_nullable
      have "nullable r1" by fact
      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule PMatch_mkeps)
      moreover
      have "s \<in> der c r2 \<rightarrow> v1" by fact
      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
      moreover
      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
      by(rule PMatch.intros)
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
    next
      case not_nullable
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
      moreover
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
        by (rule_tac PMatch.intros) (simp_all) 
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
    qed
next
  case (STAR r)
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
  then consider
      (cons) v1 vs s1 s2 where 
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
        apply(auto elim!: PMatch_elims(1-4) simp add: der_correctness Der_def intro: PMatch.intros)
        apply(rotate_tac 3)
        apply(erule_tac PMatch_elims(5))
        apply (simp add: PMatch.intros(6))
        using PMatch.intros(7) by blast
    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
    proof (cases)
      case cons
          have "s1 \<in> der c r \<rightarrow> v1" by fact
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
        moreover
          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
        moreover 
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
          then have "flat (injval r c v1) = (c # s1)" by (rule PMatch1)
          then have "flat (injval r c v1) \<noteq> []" by simp
        moreover 
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
            by (simp add: der_correctness Der_def)
        ultimately 
        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule PMatch.intros)
        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
    qed
qed

lemma lex_correct1:
  assumes "s \<notin> L r"
  shows "matcher r s = None"
using assms
apply(induct s arbitrary: r)
apply(simp add: nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(auto simp add: der_correctness Der_def)
done

lemma lex_correct1a:
  shows "s \<notin> L r \<longleftrightarrow> matcher r s = None"
using assms
apply(induct s arbitrary: r)
apply(simp add: nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(auto simp add: der_correctness Der_def)
done

lemma lex_correct2:
  assumes "s \<in> L r"
  shows "\<exists>v. matcher r s = Some(v) \<and> \<turnstile> v : r \<and> flat v = s"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis mkeps_flat mkeps_nullable nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(drule meta_mp)
apply(simp add: der_correctness Der_def)
apply(auto)
apply (metis Prf_injval)
apply(rule Prf_injval_flat)
by simp

lemma lex_correct3:
  assumes "s \<in> L r"
  shows "\<exists>v. matcher r s = Some(v) \<and> s \<in> r \<rightarrow> v"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis PMatch_mkeps nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(drule meta_mp)
apply(simp add: der_correctness Der_def)
apply(auto)
by (metis PMatch2_roy_version)

lemma lex_correct3a:
  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. matcher r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis PMatch_mkeps nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(auto)
apply(metis PMatch2_roy_version)
apply(simp add: der_correctness Der_def)
using lex_correct1a 
apply fastforce
apply(simp add: der_correctness Der_def)
by (simp add: lex_correct1a)

lemma lex_correct3b:
  shows "s \<in> L r \<longleftrightarrow> (\<exists>!v. matcher r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
using assms
apply(induct s arbitrary: r)
apply(simp)
apply (metis PMatch_mkeps nullable_correctness)
apply(drule_tac x="der a r" in meta_spec)
apply(simp add: der_correctness Der_def)
apply(case_tac "matcher (der a r) s = None")
apply(simp)
apply(simp)
apply(clarify)
apply(rule iffI)
apply(auto)
apply(rule PMatch2_roy_version)
apply(simp)
using PMatch1(1) by auto


fun F_RIGHT where
  "F_RIGHT f v = Right (f v)"

fun F_LEFT where
  "F_LEFT f v = Left (f v)"

fun F_ALT where
  "F_ALT f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)"
| "F_ALT f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)" 

fun F_SEQ1 where
  "F_SEQ1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)"

fun F_SEQ2 where 
  "F_SEQ2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)"

fun F_SEQ where 
  "F_SEQ f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)"

fun simp_ALT where
  "simp_ALT (ZERO, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)"
| "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)"
| "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"

fun simp_SEQ where
  "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"
| "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2) = (r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"
| "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"  
 
fun 
  simp :: "rexp \<Rightarrow> rexp * (val \<Rightarrow> val)"
where
  "simp (ALT r1 r2) = simp_ALT (simp r1) (simp r2)" 
| "simp (SEQ r1 r2) = simp_SEQ (simp r1) (simp r2)" 
| "simp r = (r, id)"

fun 
  matcher3 :: "rexp \<Rightarrow> string \<Rightarrow> val option"
where
  "matcher3 r [] = (if nullable r then Some(mkeps r) else None)"
| "matcher3 r (c#s) = (let (rs, fr) = simp (der c r) in
                         (case (matcher3 rs s) of  
                            None \<Rightarrow> None
                          | Some(v) \<Rightarrow> Some(injval r c (fr v))))"

end