import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
import scala.io.Source
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
case class CRANGE(cs: String) extends Rexp
case class PLUS(r: Rexp) extends Rexp
case class OPT(r: Rexp) extends Rexp
case class NTIMES(r: Rexp, n: Int) extends Rexp
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
def Alts(rs: List[Rexp]) : Rexp = rs match {
case Nil => ZERO
case r::Nil => r
case r::rs => ALT(r, Alts(rs))
}
def ALTS(rs: Rexp*) = Alts(rs.toList)
def Seqs(rs: List[Rexp]) : Rexp = rs match {
case Nil => ONE
case r::Nil => r
case r::rs => SEQ(r, Seqs(rs))
}
def SEQS(rs: Rexp*) = Seqs(rs.toList)
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r1) => nullable(r1)
case CRANGE(_) => false
case PLUS(r) => nullable(r)
case OPT(_) => true
case NTIMES(r, n) => if (n == 0) true else nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
case CRANGE(cs) => if (cs.contains(c)) ONE else ZERO
case PLUS(r) => SEQ(der(c, r), STAR(r))
case OPT(r) => ALT(der(c, r), ZERO)
case NTIMES(r, n) => if (n == 0) ZERO else der(c, SEQ(r, NTIMES(r, n - 1)))
}
// derivative w.r.t. a string (iterates der)
@tailrec
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// extracts a string from value
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten(_)).mkString
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// injection part
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALT(r1, r2) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
case PLUS(r) => Stars(List(mkeps(r)))
case OPT(_) => Right(Empty)
case NTIMES(r, n) => if (n == 0) Stars(Nil) else Stars(Nil.padTo(n, mkeps(r)))
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
case (CHAR(d), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
case (CRANGE(_), Empty) => Chr(c)
case (PLUS(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (OPT(r), Left(v1)) => Left(inj(r, c, v1))
case (NTIMES(r, n), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (NTIMES(r, n), Left(Sequ(v1, Stars(vs)))) => Stars(inj(r, c, v1)::vs)
case (NTIMES(r, n), Right(Stars(v::vs))) => Stars(mkeps(r)::inj(r, c, v)::vs)
}
// main unsimplified lexing function (produces a value)
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = (v:Val) => Sequ(f1(v), f2(Empty))
def F_RECD(f: Val => Val) = (v:Val) => v match {
case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALT(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALT (r1s, r2s), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case RECD(x, r1) => {
val (r1s, f1s) = simp(r1)
(RECD(x, r1s), F_RECD(f1s))
}
case r => (r, F_ID)
}
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
// Some Tests
//============
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
val r0 = ("a" | "ab") ~ ("b" | "")
println(lexing(r0, "ab"))
println(lexing_simp(r0, "ab"))
val r1 = ("a" | "ab") ~ ("bcd" | "cd")
println(lexing_simp(r1, "abcd"))
println(lexing_simp((("" | "a") ~ ("ab" | "b")), "ab"))
println(lexing_simp((("" | "a") ~ ("b" | "ab")), "ab"))
println(lexing_simp((("" | "a") ~ ("c" | "ab")), "ab"))
// Two Simple Tests for the While Language
//========================================
// Lexing Rules
def PLUSs(r: Rexp) = r ~ r.%
val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
val ID = SYM ~ (SYM | DIGIT).%
val NUM = PLUSs(DIGIT)
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
val SEMI: Rexp = ";"
val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
val WHITESPACE = PLUSs(" " | "\n" | "\t")
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("b" $ (BEGIN | END)) |
("w" $ WHITESPACE)).%
/*
val WHILE_REGS = (KEYWORD |
ID |
OP |
NUM |
SEMI |
LPAREN | RPAREN |
BEGIN | END |
WHITESPACE).%
*/
println("prog0 test")
val prog0 = """read n"""
println(env(lexing_simp(WHILE_REGS, prog0)))
println("prog1 test")
val prog1 = """read n; write (n)"""
println(env(lexing_simp(WHILE_REGS, prog1)))
// Bigger Test
//=============
val prog2 = """
i := 2;
max := 100;
while i < max do {
isprime := 1;
j := 2;
while (j * j) <= i + 1 do {
if i % j == 0 then isprime := 0 else skip;
j := j + 1
};
if isprime == 1 then write i else skip;
i := i + 1
}"""
println("prog2 test - tokens")
println(env(lexing_simp(WHILE_REGS, prog2)))
val prog3 = """
write "fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {
temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1
};
write "result";
write minus2
"""
println("prog3 test - tokens")
println(env(lexing_simp(WHILE_REGS, prog3)))
/*
for (i <- 1 to 80) {
print(i.toString + ": ")
time(lexing_simp(WHILE_REGS, prog2 * i))
}
*/
// Sulzmann's tests
//==================
val sulzmann = ("a" | "b" | "ab").%
println(lexing_simp(sulzmann, "a" * 10))
for (i <- 1 to 4501 by 500) {
println(i + ": " + "%.5f".format(time_needed(1, lexing_simp(sulzmann, "a" * i))))
}
for (i <- 1 to 2001 by 500) {
println(i + ": " + "%.5f".format(time_needed(1, lexing_simp(sulzmann, "ab" * i))))
}
// first benchmark regex
//=======================
val reWord = CRANGE("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")
val reWordStar = STAR(reWord)
val reWordPlus = reWord ~ reWordStar
val optionSet1 = "-" | "+" | "."
val optionSet2 = "-" | "."
val atTheRate = "@"
val period = "."
val optionSet3 = "," | ";"
val whitespace = " "
val re01 = reWordPlus
val re02 = STAR(optionSet1 ~ reWordPlus)
val re03 = atTheRate
val re04 = reWordPlus
val re05 = STAR(optionSet2 ~ reWordPlus)
val re06 = period
val re07 = reWordPlus
val re08 = re05
val re09 = optionSet3
val re10 = STAR(whitespace)
val re11 = reWordPlus
val re12 = re02
val re13 = atTheRate
val re14 = reWordPlus
val re15 = re05
val re16 = period
val re17 = reWordPlus
val re18 = re05
val re01_08 = SEQS(re01, re02, re03, re04, re05, re06, re07, re08)
val re09_10 = re09 ~ re10
val re11_18 = re01_08
val re = re01_08 ~ STAR(re09_10 ~ re11_18)
def process(s: String, i: Int) : Unit = {
println(i + " " + "%.5f".format(time_needed(1, lexing(re, s))))
}
val filename = "../tests/emails.txt"
val filelines = Source.fromFile(filename).getLines.take(76).zipWithIndex
filelines.foreach({ case (s: String, i: Int) => process(s, i) })