theory SizeBound3
imports "ClosedFormsBounds"
begin
section \<open>Bit-Encodings\<close>
datatype bit = Z | S
fun code :: "val \<Rightarrow> bit list"
where
"code Void = []"
| "code (Char c) = []"
| "code (Left v) = Z # (code v)"
| "code (Right v) = S # (code v)"
| "code (Seq v1 v2) = (code v1) @ (code v2)"
| "code (Stars []) = [S]"
| "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)"
fun
Stars_add :: "val \<Rightarrow> val \<Rightarrow> val"
where
"Stars_add v (Stars vs) = Stars (v # vs)"
function
decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)"
where
"decode' ds ZERO = (Void, [])"
| "decode' ds ONE = (Void, ds)"
| "decode' ds (CH d) = (Char d, ds)"
| "decode' [] (ALT r1 r2) = (Void, [])"
| "decode' (Z # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))"
| "decode' (S # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))"
| "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in
let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))"
| "decode' [] (STAR r) = (Void, [])"
| "decode' (S # ds) (STAR r) = (Stars [], ds)"
| "decode' (Z # ds) (STAR r) = (let (v, ds') = decode' ds r in
let (vs, ds'') = decode' ds' (STAR r)
in (Stars_add v vs, ds''))"
by pat_completeness auto
lemma decode'_smaller:
assumes "decode'_dom (ds, r)"
shows "length (snd (decode' ds r)) \<le> length ds"
using assms
apply(induct ds r)
apply(auto simp add: decode'.psimps split: prod.split)
using dual_order.trans apply blast
by (meson dual_order.trans le_SucI)
termination "decode'"
apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))")
apply(auto dest!: decode'_smaller)
by (metis less_Suc_eq_le snd_conv)
definition
decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option"
where
"decode ds r \<equiv> (let (v, ds') = decode' ds r
in (if ds' = [] then Some v else None))"
lemma decode'_code_Stars:
assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []"
shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)"
using assms
apply(induct vs)
apply(auto)
done
lemma decode'_code:
assumes "\<Turnstile> v : r"
shows "decode' ((code v) @ ds) r = (v, ds)"
using assms
apply(induct v r arbitrary: ds)
apply(auto)
using decode'_code_Stars by blast
lemma decode_code:
assumes "\<Turnstile> v : r"
shows "decode (code v) r = Some v"
using assms unfolding decode_def
by (smt append_Nil2 decode'_code old.prod.case)
section {* Annotated Regular Expressions *}
datatype arexp =
AZERO
| AONE "bit list"
| ACHAR "bit list" char
| ASEQ "bit list" arexp arexp
| AALTs "bit list" "arexp list"
| ASTAR "bit list" arexp
abbreviation
"AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]"
fun asize :: "arexp \<Rightarrow> nat" where
"asize AZERO = 1"
| "asize (AONE cs) = 1"
| "asize (ACHAR cs c) = 1"
| "asize (AALTs cs rs) = Suc (sum_list (map asize rs))"
| "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)"
| "asize (ASTAR cs r) = Suc (asize r)"
fun
erase :: "arexp \<Rightarrow> rexp"
where
"erase AZERO = ZERO"
| "erase (AONE _) = ONE"
| "erase (ACHAR _ c) = CH c"
| "erase (AALTs _ []) = ZERO"
| "erase (AALTs _ [r]) = (erase r)"
| "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))"
| "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)"
| "erase (ASTAR _ r) = STAR (erase r)"
fun rerase :: "arexp \<Rightarrow> rrexp"
where
"rerase AZERO = RZERO"
| "rerase (AONE _) = RONE"
| "rerase (ACHAR _ c) = RCHAR c"
| "rerase (AALTs bs rs) = RALTS (map rerase rs)"
| "rerase (ASEQ _ r1 r2) = RSEQ (rerase r1) (rerase r2)"
| "rerase (ASTAR _ r) = RSTAR (rerase r)"
fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where
"fuse bs AZERO = AZERO"
| "fuse bs (AONE cs) = AONE (bs @ cs)"
| "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c"
| "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs"
| "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2"
| "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r"
lemma fuse_append:
shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)"
apply(induct r)
apply(auto)
done
lemma fuse_Nil:
shows "fuse [] r = r"
by (induct r)(simp_all)
(*
lemma map_fuse_Nil:
shows "map (fuse []) rs = rs"
by (induct rs)(simp_all add: fuse_Nil)
*)
fun intern :: "rexp \<Rightarrow> arexp" where
"intern ZERO = AZERO"
| "intern ONE = AONE []"
| "intern (CH c) = ACHAR [] c"
| "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1))
(fuse [S] (intern r2))"
| "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)"
| "intern (STAR r) = ASTAR [] (intern r)"
fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where
"retrieve (AONE bs) Void = bs"
| "retrieve (ACHAR bs c) (Char d) = bs"
| "retrieve (AALTs bs [r]) v = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
| "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2"
| "retrieve (ASTAR bs r) (Stars []) = bs @ [S]"
| "retrieve (ASTAR bs r) (Stars (v#vs)) =
bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)"
fun
bnullable :: "arexp \<Rightarrow> bool"
where
"bnullable (AZERO) = False"
| "bnullable (AONE bs) = True"
| "bnullable (ACHAR bs c) = False"
| "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)"
| "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)"
| "bnullable (ASTAR bs r) = True"
abbreviation
bnullables :: "arexp list \<Rightarrow> bool"
where
"bnullables rs \<equiv> (\<exists>r \<in> set rs. bnullable r)"
fun
bmkeps :: "arexp \<Rightarrow> bit list" and
bmkepss :: "arexp list \<Rightarrow> bit list"
where
"bmkeps(AONE bs) = bs"
| "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)"
| "bmkeps(AALTs bs rs) = bs @ (bmkepss rs)"
| "bmkeps(ASTAR bs r) = bs @ [S]"
| "bmkepss [] = []"
| "bmkepss (r # rs) = (if bnullable(r) then (bmkeps r) else (bmkepss rs))"
lemma bmkepss1:
assumes "\<not> bnullables rs1"
shows "bmkepss (rs1 @ rs2) = bmkepss rs2"
using assms
by (induct rs1) (auto)
lemma bmkepss2:
assumes "bnullables rs1"
shows "bmkepss (rs1 @ rs2) = bmkepss rs1"
using assms
by (induct rs1) (auto)
fun
bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp"
where
"bder c (AZERO) = AZERO"
| "bder c (AONE bs) = AZERO"
| "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)"
| "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)"
| "bder c (ASEQ bs r1 r2) =
(if bnullable r1
then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2))
else ASEQ bs (bder c r1) r2)"
| "bder c (ASTAR bs r) = ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)"
fun
bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
where
"bders r [] = r"
| "bders r (c#s) = bders (bder c r) s"
lemma bders_append:
"bders r (s1 @ s2) = bders (bders r s1) s2"
apply(induct s1 arbitrary: r s2)
apply(simp_all)
done
lemma bnullable_correctness:
shows "nullable (erase r) = bnullable r"
apply(induct r rule: erase.induct)
apply(simp_all)
done
lemma rbnullable_correctness:
shows "rnullable (rerase r) = bnullable r"
apply(induct r rule: rerase.induct)
apply simp+
done
lemma erase_fuse:
shows "erase (fuse bs r) = erase r"
apply(induct r rule: erase.induct)
apply(simp_all)
done
lemma rerase_fuse:
shows "rerase (fuse bs r) = rerase r"
apply(induct r)
apply simp+
done
lemma erase_intern [simp]:
shows "erase (intern r) = r"
apply(induct r)
apply(simp_all add: erase_fuse)
done
lemma erase_bder [simp]:
shows "erase (bder a r) = der a (erase r)"
apply(induct r rule: erase.induct)
apply(simp_all add: erase_fuse bnullable_correctness)
done
lemma erase_bders [simp]:
shows "erase (bders r s) = ders s (erase r)"
apply(induct s arbitrary: r )
apply(simp_all)
done
lemma bnullable_fuse:
shows "bnullable (fuse bs r) = bnullable r"
apply(induct r arbitrary: bs)
apply(auto)
done
lemma retrieve_encode_STARS:
assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v"
shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)"
using assms
apply(induct vs)
apply(simp_all)
done
lemma retrieve_fuse2:
assumes "\<Turnstile> v : (erase r)"
shows "retrieve (fuse bs r) v = bs @ retrieve r v"
using assms
apply(induct r arbitrary: v bs)
apply(auto elim: Prf_elims)[4]
defer
using retrieve_encode_STARS
apply(auto elim!: Prf_elims)[1]
apply(case_tac vs)
apply(simp)
apply(simp)
(* AALTs case *)
apply(simp)
apply(case_tac x2a)
apply(simp)
apply(auto elim!: Prf_elims)[1]
apply(simp)
apply(case_tac list)
apply(simp)
apply(auto)
apply(auto elim!: Prf_elims)[1]
done
lemma retrieve_fuse:
assumes "\<Turnstile> v : r"
shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v"
using assms
by (simp_all add: retrieve_fuse2)
lemma retrieve_code:
assumes "\<Turnstile> v : r"
shows "code v = retrieve (intern r) v"
using assms
apply(induct v r )
apply(simp_all add: retrieve_fuse retrieve_encode_STARS)
done
(*
lemma bnullable_Hdbmkeps_Hd:
assumes "bnullable a"
shows "bmkeps (AALTs bs (a # rs)) = bs @ (bmkeps a)"
using assms by simp
*)
lemma r2:
assumes "x \<in> set rs" "bnullable x"
shows "bnullable (AALTs bs rs)"
using assms
apply(induct rs)
apply(auto)
done
lemma r3:
assumes "\<not> bnullable r"
"bnullables rs"
shows "retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs))) =
retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))"
using assms
apply(induct rs arbitrary: r bs)
apply(auto)[1]
apply(auto)
using bnullable_correctness apply blast
apply(auto simp add: bnullable_correctness mkeps_nullable retrieve_fuse2)
apply(subst retrieve_fuse2[symmetric])
apply (smt bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable)
apply(simp)
apply(case_tac "bnullable a")
apply (smt append_Nil2 bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) fuse.simps(4) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable retrieve_fuse2)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="bs" in meta_spec)
apply(drule meta_mp)
apply(simp)
apply(drule meta_mp)
apply(auto)
apply(subst retrieve_fuse2[symmetric])
apply(case_tac rs)
apply(simp)
apply(auto)[1]
apply (simp add: bnullable_correctness)
apply (metis append_Nil2 bnullable_correctness erase_fuse fuse.simps(4) list.set_intros(1) mkeps.simps(3) mkeps_nullable nullable.simps(4) r2)
apply (simp add: bnullable_correctness)
apply (metis append_Nil2 bnullable_correctness erase.simps(6) erase_fuse fuse.simps(4) list.set_intros(2) mkeps.simps(3) mkeps_nullable r2)
apply(simp)
done
lemma t:
assumes "\<forall>r \<in> set rs. bnullable r \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))"
"bnullables rs"
shows "bs @ bmkepss rs = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
using assms
apply(induct rs arbitrary: bs)
apply(auto)
apply (metis (no_types, opaque_lifting) bmkepss.cases bnullable_correctness erase.simps(5) erase.simps(6) mkeps.simps(3) retrieve.simps(3) retrieve.simps(4))
apply (metis r3)
apply (metis (no_types, lifting) bmkepss.cases bnullable_correctness empty_iff erase.simps(6) list.set(1) mkeps.simps(3) retrieve.simps(4))
apply (metis r3)
done
lemma bmkeps_retrieve:
assumes "bnullable r"
shows "bmkeps r = retrieve r (mkeps (erase r))"
using assms
apply(induct r)
apply(auto)
using t by auto
lemma bder_retrieve:
assumes "\<Turnstile> v : der c (erase r)"
shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"
using assms
apply(induct r arbitrary: v rule: erase.induct)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(case_tac "c = ca")
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(case_tac rs)
apply(simp)
apply(simp)
apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) retrieve.simps(4) retrieve.simps(5) same_append_eq)
apply(simp)
apply(case_tac "nullable (erase r1)")
apply(simp)
apply(erule Prf_elims)
apply(subgoal_tac "bnullable r1")
prefer 2
using bnullable_correctness apply blast
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(subgoal_tac "bnullable r1")
prefer 2
using bnullable_correctness apply blast
apply(simp)
apply(simp add: retrieve_fuse2)
apply(simp add: bmkeps_retrieve)
apply(simp)
apply(erule Prf_elims)
apply(simp)
using bnullable_correctness apply blast
apply(rename_tac bs r v)
apply(simp)
apply(erule Prf_elims)
apply(clarify)
apply(erule Prf_elims)
apply(clarify)
apply(subst injval.simps)
apply(simp del: retrieve.simps)
apply(subst retrieve.simps)
apply(subst retrieve.simps)
apply(simp)
apply(simp add: retrieve_fuse2)
done
lemma MAIN_decode:
assumes "\<Turnstile> v : ders s r"
shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r"
using assms
proof (induct s arbitrary: v rule: rev_induct)
case Nil
have "\<Turnstile> v : ders [] r" by fact
then have "\<Turnstile> v : r" by simp
then have "Some v = decode (retrieve (intern r) v) r"
using decode_code retrieve_code by auto
then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r"
by simp
next
case (snoc c s v)
have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow>
Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact
have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact
then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r"
by (simp add: Prf_injval ders_append)
have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))"
by (simp add: flex_append)
also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r"
using asm2 IH by simp
also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r"
using asm by (simp_all add: bder_retrieve ders_append)
finally show "Some (flex r id (s @ [c]) v) =
decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append)
qed
definition blexer where
"blexer r s \<equiv> if bnullable (bders (intern r) s) then
decode (bmkeps (bders (intern r) s)) r else None"
lemma blexer_correctness:
shows "blexer r s = lexer r s"
proof -
{ define bds where "bds \<equiv> bders (intern r) s"
define ds where "ds \<equiv> ders s r"
assume asm: "nullable ds"
have era: "erase bds = ds"
unfolding ds_def bds_def by simp
have mke: "\<Turnstile> mkeps ds : ds"
using asm by (simp add: mkeps_nullable)
have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r"
using bmkeps_retrieve
using asm era
using bnullable_correctness by force
also have "... = Some (flex r id s (mkeps ds))"
using mke by (simp_all add: MAIN_decode ds_def bds_def)
finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))"
unfolding bds_def ds_def .
}
then show "blexer r s = lexer r s"
unfolding blexer_def lexer_flex
by (auto simp add: bnullable_correctness[symmetric])
qed
fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list"
where
"distinctBy [] f acc = []"
| "distinctBy (x#xs) f acc =
(if (f x) \<in> acc then distinctBy xs f acc
else x # (distinctBy xs f ({f x} \<union> acc)))"
fun flts :: "arexp list \<Rightarrow> arexp list"
where
"flts [] = []"
| "flts (AZERO # rs) = flts rs"
| "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs"
| "flts (r1 # rs) = r1 # flts rs"
fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp"
where
"bsimp_ASEQ _ AZERO _ = AZERO"
| "bsimp_ASEQ _ _ AZERO = AZERO"
| "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2"
| "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2"
lemma bsimp_ASEQ0[simp]:
shows "bsimp_ASEQ bs r1 AZERO = AZERO"
by (case_tac r1)(simp_all)
lemma bsimp_ASEQ1:
assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<nexists>bs. r1 = AONE bs"
shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2"
using assms
apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
apply(auto)
done
lemma bsimp_ASEQ2[simp]:
shows "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2"
by (case_tac r2) (simp_all)
fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp"
where
"bsimp_AALTs _ [] = AZERO"
| "bsimp_AALTs bs1 [r] = fuse bs1 r"
| "bsimp_AALTs bs1 rs = AALTs bs1 rs"
fun bsimp :: "arexp \<Rightarrow> arexp"
where
"bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)"
| "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) rerase {}) "
| "bsimp r = r"
fun
bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
where
"bders_simp r [] = r"
| "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s"
definition blexer_simp where
"blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then
decode (bmkeps (bders_simp (intern r) s)) r else None"
lemma bders_simp_append:
shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2"
apply(induct s1 arbitrary: r s2)
apply(simp_all)
done
lemma L_bsimp_ASEQ:
"L (erase (ASEQ bs r1 r2)) = L (erase (bsimp_ASEQ bs r1 r2))"
apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
apply(simp_all)
by (metis erase_fuse fuse.simps(4))
lemma RL_bsimp_ASEQ:
"RL (rerase (ASEQ bs r1 r2)) = RL (rerase (bsimp_ASEQ bs r1 r2))"
apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
apply simp+
done
lemma L_bsimp_AALTs:
"L (erase (AALTs bs rs)) = L (erase (bsimp_AALTs bs rs))"
apply(induct bs rs rule: bsimp_AALTs.induct)
apply(simp_all add: erase_fuse)
done
lemma RL_bsimp_AALTs:
"RL (rerase (AALTs bs rs)) = RL (rerase (bsimp_AALTs bs rs))"
apply(induct bs rs rule: bsimp_AALTs.induct)
apply(simp_all add: rerase_fuse)
done
lemma RL_rerase_AALTs:
shows "RL (rerase (AALTs bs rs)) = \<Union> (RL ` rerase ` (set rs))"
apply(induct rs)
apply(simp)
apply(simp)
done
lemma L_erase_AALTs:
shows "L (erase (AALTs bs rs)) = \<Union> (L ` erase ` (set rs))"
apply(induct rs)
apply(simp)
apply(simp)
apply(case_tac rs)
apply(simp)
apply(simp)
done
lemma L_erase_flts:
shows "\<Union> (L ` erase ` (set (flts rs))) = \<Union> (L ` erase ` (set rs))"
apply(induct rs rule: flts.induct)
apply(simp_all)
apply(auto)
using L_erase_AALTs erase_fuse apply auto[1]
by (simp add: L_erase_AALTs erase_fuse)
lemma RL_erase_flts:
shows "\<Union> (RL ` rerase ` (set (flts rs))) =
\<Union> (RL ` rerase ` (set rs))"
apply(induct rs rule: flts.induct)
apply simp+
apply auto
apply (smt (verit) fuse.elims rerase.simps(2) rerase.simps(3) rerase.simps(4) rerase.simps(5) rerase.simps(6))
by (smt (verit, best) fuse.elims rerase.simps(2) rerase.simps(3) rerase.simps(4) rerase.simps(5) rerase.simps(6))
lemma L_erase_dB_acc:
shows "(\<Union> (L ` acc) \<union> (\<Union> (L ` erase ` (set (distinctBy rs erase acc)))))
= \<Union> (L ` acc) \<union> \<Union> (L ` erase ` (set rs))"
apply(induction rs arbitrary: acc)
apply simp_all
by (smt (z3) SUP_absorb UN_insert sup_assoc sup_commute)
lemma RL_rerase_dB_acc:
shows "(\<Union> (RL ` acc) \<union> (\<Union> (RL ` rerase ` (set (distinctBy rs rerase acc)))))
= \<Union> (RL ` acc) \<union> \<Union> (RL ` rerase ` (set rs))"
apply(induction rs arbitrary: acc)
apply simp_all
by (smt (z3) SUP_absorb UN_insert sup_assoc sup_commute)
lemma L_erase_dB:
shows "(\<Union> (L ` erase ` (set (distinctBy rs erase {})))) = \<Union> (L ` erase ` (set rs))"
by (metis L_erase_dB_acc Un_commute Union_image_empty)
lemma RL_rerase_dB:
shows "(\<Union> (RL ` rerase ` (set (distinctBy rs rerase {})))) = \<Union> (RL ` rerase ` (set rs))"
by (metis RL_rerase_dB_acc Un_commute Union_image_empty)
(*
lemma L_bsimp_erase:
shows "L (erase r) = L (erase (bsimp r))"
apply(induct r)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: Sequ_def)[1]
apply(subst L_bsimp_ASEQ[symmetric])
apply(auto simp add: Sequ_def)[1]
apply(subst (asm) L_bsimp_ASEQ[symmetric])
apply(auto simp add: Sequ_def)[1]
apply(simp)
apply(subst L_bsimp_AALTs[symmetric])
defer
apply(simp)
apply(subst (2)L_erase_AALTs)
apply(subst L_erase_dB)
apply(subst L_erase_flts)
apply (simp add: L_erase_AALTs)
done
*)
lemma RL_bsimp_rerase:
shows "RL (rerase r) = RL (rerase (bsimp r))"
apply(induct r)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: Sequ_def)[1]
apply(subst RL_bsimp_ASEQ[symmetric])
apply(auto simp add: Sequ_def)[1]
apply(subst (asm) RL_bsimp_ASEQ[symmetric])
apply(auto simp add: Sequ_def)[1]
apply(simp)
apply(subst RL_bsimp_AALTs[symmetric])
defer
apply(simp)
using RL_erase_flts RL_rerase_dB by force
lemma rder_correctness:
shows "RL (rder c r) = Der c (RL r)"
by (simp add: RL_rder)
lemma asize_rsize:
shows "rsize (rerase r) = asize r"
apply(induct r)
apply simp+
apply (metis (mono_tags, lifting) comp_apply map_eq_conv)
by simp
lemma rb_nullability:
shows " rnullable (rerase a) = bnullable a"
apply(induct a)
apply simp+
done
lemma fuse_anything_doesnt_matter:
shows "rerase a = rerase (fuse bs a)"
by (smt (verit) fuse.elims rerase.simps(2) rerase.simps(3) rerase.simps(4) rerase.simps(5) rerase.simps(6))
lemma rder_bder_rerase:
shows "rder c (rerase r ) = rerase (bder c r)"
apply (induct r)
apply simp+
apply(case_tac "bnullable r1")
apply simp
apply (simp add: rb_nullability rerase_fuse)
using rb_nullability apply presburger
apply simp
apply simp
using rerase_fuse by presburger
lemma RL_bder_preserved:
shows "RL (rerase a1) = RL (rerase a2) \<Longrightarrow> RL (rerase (bder c a1 )) = RL (rerase (bder c a2))"
by (metis rder_bder_rerase rder_correctness)
lemma RL_bders_simp:
shows "RL (rerase (bders_simp r s)) = RL (rerase (bders r s))"
apply(induct s arbitrary: r rule: rev_induct)
apply(simp)
apply(simp add: bders_append)
apply(simp add: bders_simp_append)
apply(simp add: RL_bsimp_rerase[symmetric])
using RL_bder_preserved by blast
lemma bmkeps_fuse:
assumes "bnullable r"
shows "bmkeps (fuse bs r) = bs @ bmkeps r"
by (metis assms bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2)
lemma bmkepss_fuse:
assumes "bnullables rs"
shows "bmkepss (map (fuse bs) rs) = bs @ bmkepss rs"
using assms
apply(induct rs arbitrary: bs)
apply(auto simp add: bmkeps_fuse bnullable_fuse)
done
lemma b4:
shows "bnullable (bders_simp r s) = bnullable (bders r s)"
proof -
have "RL (rerase (bders_simp r s)) = RL (rerase (bders r s))"
by (simp add: RL_bders_simp)
then show "bnullable (bders_simp r s) = bnullable (bders r s)"
using RL_rnullable rb_nullability by blast
qed
lemma bder_fuse:
shows "bder c (fuse bs a) = fuse bs (bder c a)"
apply(induct a arbitrary: bs c)
apply(simp_all)
done
inductive
rrewrite:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99)
and
srewrite:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ s\<leadsto> _" [100, 100] 100)
where
bs1: "ASEQ bs AZERO r2 \<leadsto> AZERO"
| bs2: "ASEQ bs r1 AZERO \<leadsto> AZERO"
| bs3: "ASEQ bs1 (AONE bs2) r \<leadsto> fuse (bs1@bs2) r"
| bs4: "r1 \<leadsto> r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r2 r3"
| bs5: "r3 \<leadsto> r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r1 r4"
| bs6: "AALTs bs [] \<leadsto> AZERO"
| bs7: "AALTs bs [r] \<leadsto> fuse bs r"
| bs10: "rs1 s\<leadsto> rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto> AALTs bs rs2"
| ss1: "[] s\<leadsto> []"
| ss2: "rs1 s\<leadsto> rs2 \<Longrightarrow> (r # rs1) s\<leadsto> (r # rs2)"
| ss3: "r1 \<leadsto> r2 \<Longrightarrow> (r1 # rs) s\<leadsto> (r2 # rs)"
| ss4: "(AZERO # rs) s\<leadsto> rs"
| ss5: "(AALTs bs1 rs1 # rsb) s\<leadsto> ((map (fuse bs1) rs1) @ rsb)"
| ss6: "rerase a1 = rerase a2 \<Longrightarrow> (rsa@[a1]@rsb@[a2]@rsc) s\<leadsto> (rsa@[a1]@rsb@rsc)"
inductive
rrewrites:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100)
where
rs1[intro, simp]:"r \<leadsto>* r"
| rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"
inductive
srewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" ("_ s\<leadsto>* _" [100, 100] 100)
where
sss1[intro, simp]:"rs s\<leadsto>* rs"
| sss2[intro]: "\<lbrakk>rs1 s\<leadsto> rs2; rs2 s\<leadsto>* rs3\<rbrakk> \<Longrightarrow> rs1 s\<leadsto>* rs3"
lemma r_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2"
using rrewrites.intros(1) rrewrites.intros(2) by blast
lemma rrewrites_trans[trans]:
assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3"
shows "r1 \<leadsto>* r3"
using a2 a1
apply(induct r2 r3 arbitrary: r1 rule: rrewrites.induct)
apply(auto)
done
lemma srewrites_trans[trans]:
assumes a1: "r1 s\<leadsto>* r2" and a2: "r2 s\<leadsto>* r3"
shows "r1 s\<leadsto>* r3"
using a1 a2
apply(induct r1 r2 arbitrary: r3 rule: srewrites.induct)
apply(auto)
done
lemma contextrewrites0:
"rs1 s\<leadsto>* rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto>* AALTs bs rs2"
apply(induct rs1 rs2 rule: srewrites.inducts)
apply simp
using bs10 r_in_rstar rrewrites_trans by blast
lemma contextrewrites1:
"r \<leadsto>* r' \<Longrightarrow> AALTs bs (r # rs) \<leadsto>* AALTs bs (r' # rs)"
apply(induct r r' rule: rrewrites.induct)
apply simp
using bs10 ss3 by blast
lemma srewrite1:
shows "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto> (rs @ rs2)"
apply(induct rs)
apply(auto)
using ss2 by auto
lemma srewrites1:
shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto>* (rs @ rs2)"
apply(induct rs1 rs2 rule: srewrites.induct)
apply(auto)
using srewrite1 by blast
lemma srewrite2:
shows "r1 \<leadsto> r2 \<Longrightarrow> True"
and "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)"
apply(induct rule: rrewrite_srewrite.inducts)
apply(auto)
apply (metis append_Cons append_Nil srewrites1)
apply(meson srewrites.simps ss3)
apply (meson srewrites.simps ss4)
apply (meson srewrites.simps ss5)
by (metis append_Cons append_Nil srewrites.simps ss6)
lemma srewrites3:
shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)"
apply(induct rs1 rs2 arbitrary: rs rule: srewrites.induct)
apply(auto)
by (meson srewrite2(2) srewrites_trans)
(*
lemma srewrites4:
assumes "rs3 s\<leadsto>* rs4" "rs1 s\<leadsto>* rs2"
shows "(rs1 @ rs3) s\<leadsto>* (rs2 @ rs4)"
using assms
apply(induct rs3 rs4 arbitrary: rs1 rs2 rule: srewrites.induct)
apply (simp add: srewrites3)
using srewrite1 by blast
*)
lemma srewrites6:
assumes "r1 \<leadsto>* r2"
shows "[r1] s\<leadsto>* [r2]"
using assms
apply(induct r1 r2 rule: rrewrites.induct)
apply(auto)
by (meson srewrites.simps srewrites_trans ss3)
lemma srewrites7:
assumes "rs3 s\<leadsto>* rs4" "r1 \<leadsto>* r2"
shows "(r1 # rs3) s\<leadsto>* (r2 # rs4)"
using assms
by (smt (verit, best) append_Cons append_Nil srewrites1 srewrites3 srewrites6 srewrites_trans)
lemma ss6_stronger_aux:
shows "(rs1 @ rs2) s\<leadsto>* (rs1 @ distinctBy rs2 rerase (set (map rerase rs1)))"
apply(induct rs2 arbitrary: rs1)
apply(auto)
apply (smt (verit, best) append.assoc append.right_neutral append_Cons append_Nil split_list srewrite2(2) srewrites_trans ss6)
apply(drule_tac x="rs1 @ [a]" in meta_spec)
apply(simp)
done
lemma ss6_stronger:
shows "rs1 s\<leadsto>* distinctBy rs1 rerase {}"
by (metis append_Nil list.set(1) list.simps(8) ss6_stronger_aux)
lemma rewrite_preserves_fuse:
shows "r2 \<leadsto> r3 \<Longrightarrow> fuse bs r2 \<leadsto> fuse bs r3"
and "rs2 s\<leadsto> rs3 \<Longrightarrow> map (fuse bs) rs2 s\<leadsto>* map (fuse bs) rs3"
proof(induct rule: rrewrite_srewrite.inducts)
case (bs3 bs1 bs2 r)
then show ?case
by (metis fuse.simps(5) fuse_append rrewrite_srewrite.bs3)
next
case (bs7 bs r)
then show ?case
by (metis fuse.simps(4) fuse_append rrewrite_srewrite.bs7)
next
case (ss2 rs1 rs2 r)
then show ?case
using srewrites7 by force
next
case (ss3 r1 r2 rs)
then show ?case by (simp add: r_in_rstar srewrites7)
next
case (ss5 bs1 rs1 rsb)
then show ?case
apply(simp)
by (metis (mono_tags, lifting) comp_def fuse_append map_eq_conv rrewrite_srewrite.ss5 srewrites.simps)
next
case (ss6 a1 a2 rsa rsb rsc)
then show ?case
apply(simp only: map_append)
by (smt (verit, ccfv_threshold) rerase_fuse list.simps(8) list.simps(9) rrewrite_srewrite.ss6 srewrites.simps)
qed (auto intro: rrewrite_srewrite.intros)
lemma rewrites_fuse:
assumes "r1 \<leadsto>* r2"
shows "fuse bs r1 \<leadsto>* fuse bs r2"
using assms
apply(induction r1 r2 arbitrary: bs rule: rrewrites.induct)
apply(auto intro: rewrite_preserves_fuse rrewrites_trans)
done
lemma star_seq:
assumes "r1 \<leadsto>* r2"
shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r2 r3"
using assms
apply(induct r1 r2 arbitrary: r3 rule: rrewrites.induct)
apply(auto intro: rrewrite_srewrite.intros)
done
lemma star_seq2:
assumes "r3 \<leadsto>* r4"
shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r1 r4"
using assms
apply(induct r3 r4 arbitrary: r1 rule: rrewrites.induct)
apply(auto intro: rrewrite_srewrite.intros)
done
lemma continuous_rewrite:
assumes "r1 \<leadsto>* AZERO"
shows "ASEQ bs1 r1 r2 \<leadsto>* AZERO"
using assms bs1 star_seq by blast
(*
lemma continuous_rewrite2:
assumes "r1 \<leadsto>* AONE bs"
shows "ASEQ bs1 r1 r2 \<leadsto>* (fuse (bs1 @ bs) r2)"
using assms by (meson bs3 rrewrites.simps star_seq)
*)
lemma bsimp_aalts_simpcases:
shows "AONE bs \<leadsto>* bsimp (AONE bs)"
and "AZERO \<leadsto>* bsimp AZERO"
and "ACHAR bs c \<leadsto>* bsimp (ACHAR bs c)"
by (simp_all)
lemma bsimp_AALTs_rewrites:
shows "AALTs bs1 rs \<leadsto>* bsimp_AALTs bs1 rs"
by (smt (verit) bs6 bs7 bsimp_AALTs.elims rrewrites.simps)
lemma trivialbsimp_srewrites:
"\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x \<rbrakk> \<Longrightarrow> rs s\<leadsto>* (map f rs)"
apply(induction rs)
apply simp
apply(simp)
using srewrites7 by auto
lemma fltsfrewrites: "rs s\<leadsto>* flts rs"
apply(induction rs rule: flts.induct)
apply(auto intro: rrewrite_srewrite.intros)
apply (meson srewrites.simps srewrites1 ss5)
using rs1 srewrites7 apply presburger
using srewrites7 apply force
apply (simp add: srewrites7)
by (simp add: srewrites7)
lemma bnullable0:
shows "r1 \<leadsto> r2 \<Longrightarrow> bnullable r1 = bnullable r2"
and "rs1 s\<leadsto> rs2 \<Longrightarrow> bnullables rs1 = bnullables rs2"
apply(induct rule: rrewrite_srewrite.inducts)
apply(auto simp add: bnullable_fuse)
apply (meson UnCI bnullable_fuse imageI)
by (metis rb_nullability)
lemma rewritesnullable:
assumes "r1 \<leadsto>* r2"
shows "bnullable r1 = bnullable r2"
using assms
apply(induction r1 r2 rule: rrewrites.induct)
apply simp
using bnullable0(1) by auto
lemma rewrite_bmkeps_aux:
shows "r1 \<leadsto> r2 \<Longrightarrow> (bnullable r1 \<and> bnullable r2 \<Longrightarrow> bmkeps r1 = bmkeps r2)"
and "rs1 s\<leadsto> rs2 \<Longrightarrow> (bnullables rs1 \<and> bnullables rs2 \<Longrightarrow> bmkepss rs1 = bmkepss rs2)"
proof (induct rule: rrewrite_srewrite.inducts)
case (bs3 bs1 bs2 r)
then show ?case by (simp add: bmkeps_fuse)
next
case (bs7 bs r)
then show ?case by (simp add: bmkeps_fuse)
next
case (ss3 r1 r2 rs)
then show ?case
by (metis bmkepss.simps(2) bnullable0(1))
next
case (ss5 bs1 rs1 rsb)
then show ?case
by (simp add: bmkepss1 bmkepss2 bmkepss_fuse bnullable_fuse)
next
case (ss6 a1 a2 rsa rsb rsc)
then show ?case
by (smt (z3) append_is_Nil_conv bmkepss1 bmkepss2 in_set_conv_decomp_first list.set_intros(1) rb_nullability set_ConsD)
qed (auto)
lemma rewrites_bmkeps:
assumes "r1 \<leadsto>* r2" "bnullable r1"
shows "bmkeps r1 = bmkeps r2"
using assms
proof(induction r1 r2 rule: rrewrites.induct)
case (rs1 r)
then show "bmkeps r = bmkeps r" by simp
next
case (rs2 r1 r2 r3)
then have IH: "bmkeps r1 = bmkeps r2" by simp
have a1: "bnullable r1" by fact
have a2: "r1 \<leadsto>* r2" by fact
have a3: "r2 \<leadsto> r3" by fact
have a4: "bnullable r2" using a1 a2 by (simp add: rewritesnullable)
then have "bmkeps r2 = bmkeps r3"
using a3 bnullable0(1) rewrite_bmkeps_aux(1) by blast
then show "bmkeps r1 = bmkeps r3" using IH by simp
qed
lemma rewrites_to_bsimp:
shows "r \<leadsto>* bsimp r"
proof (induction r rule: bsimp.induct)
case (1 bs1 r1 r2)
have IH1: "r1 \<leadsto>* bsimp r1" by fact
have IH2: "r2 \<leadsto>* bsimp r2" by fact
{ assume as: "bsimp r1 = AZERO \<or> bsimp r2 = AZERO"
with IH1 IH2 have "r1 \<leadsto>* AZERO \<or> r2 \<leadsto>* AZERO" by auto
then have "ASEQ bs1 r1 r2 \<leadsto>* AZERO"
by (metis bs2 continuous_rewrite rrewrites.simps star_seq2)
then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" using as by auto
}
moreover
{ assume "\<exists>bs. bsimp r1 = AONE bs"
then obtain bs where as: "bsimp r1 = AONE bs" by blast
with IH1 have "r1 \<leadsto>* AONE bs" by simp
then have "ASEQ bs1 r1 r2 \<leadsto>* fuse (bs1 @ bs) r2" using bs3 star_seq by blast
with IH2 have "ASEQ bs1 r1 r2 \<leadsto>* fuse (bs1 @ bs) (bsimp r2)"
using rewrites_fuse by (meson rrewrites_trans)
then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 (AONE bs) r2)" by simp
then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by (simp add: as)
}
moreover
{ assume as1: "bsimp r1 \<noteq> AZERO" "bsimp r2 \<noteq> AZERO" and as2: "(\<nexists>bs. bsimp r1 = AONE bs)"
then have "bsimp_ASEQ bs1 (bsimp r1) (bsimp r2) = ASEQ bs1 (bsimp r1) (bsimp r2)"
by (simp add: bsimp_ASEQ1)
then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" using as1 as2 IH1 IH2
by (metis rrewrites_trans star_seq star_seq2)
then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by simp
}
ultimately show "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by blast
next
case (2 bs1 rs)
have IH: "\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* bsimp x" by fact
then have "rs s\<leadsto>* (map bsimp rs)" by (simp add: trivialbsimp_srewrites)
also have "... s\<leadsto>* flts (map bsimp rs)" by (simp add: fltsfrewrites)
also have "... s\<leadsto>* distinctBy (flts (map bsimp rs)) rerase {}" by (simp add: ss6_stronger)
finally have "AALTs bs1 rs \<leadsto>* AALTs bs1 (distinctBy (flts (map bsimp rs)) rerase {})"
using contextrewrites0 by auto
also have "... \<leadsto>* bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) rerase {})"
by (simp add: bsimp_AALTs_rewrites)
finally show "AALTs bs1 rs \<leadsto>* bsimp (AALTs bs1 rs)" by simp
qed (simp_all)
lemma to_zero_in_alt:
shows "AALT bs (ASEQ [] AZERO r) r2 \<leadsto> AALT bs AZERO r2"
by (simp add: bs1 bs10 ss3)
lemma bder_fuse_list:
shows "map (bder c \<circ> fuse bs1) rs1 = map (fuse bs1 \<circ> bder c) rs1"
apply(induction rs1)
apply(simp_all add: bder_fuse)
done
lemma rewrite_preserves_bder:
shows "r1 \<leadsto> r2 \<Longrightarrow> (bder c r1) \<leadsto>* (bder c r2)"
and "rs1 s\<leadsto> rs2 \<Longrightarrow> map (bder c) rs1 s\<leadsto>* map (bder c) rs2"
proof(induction rule: rrewrite_srewrite.inducts)
case (bs1 bs r2)
then show ?case
by (simp add: continuous_rewrite)
next
case (bs2 bs r1)
then show ?case
apply(auto)
apply (meson bs6 contextrewrites0 rrewrite_srewrite.bs2 rs2 ss3 ss4 sss1 sss2)
by (simp add: r_in_rstar rrewrite_srewrite.bs2)
next
case (bs3 bs1 bs2 r)
then show ?case
apply(simp)
by (metis (no_types, lifting) bder_fuse bs10 bs7 fuse_append rrewrites.simps ss4 to_zero_in_alt)
next
case (bs4 r1 r2 bs r3)
have as: "r1 \<leadsto> r2" by fact
have IH: "bder c r1 \<leadsto>* bder c r2" by fact
from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r2 r3)"
by (metis bder.simps(5) bnullable0(1) contextrewrites1 rewrite_bmkeps_aux(1) star_seq)
next
case (bs5 r3 r4 bs r1)
have as: "r3 \<leadsto> r4" by fact
have IH: "bder c r3 \<leadsto>* bder c r4" by fact
from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r1 r4)"
apply(simp)
apply(auto)
using contextrewrites0 r_in_rstar rewrites_fuse srewrites6 srewrites7 star_seq2 apply presburger
using star_seq2 by blast
next
case (bs6 bs)
then show ?case
using rrewrite_srewrite.bs6 by force
next
case (bs7 bs r)
then show ?case
by (simp add: bder_fuse r_in_rstar rrewrite_srewrite.bs7)
next
case (bs10 rs1 rs2 bs)
then show ?case
using contextrewrites0 by force
next
case ss1
then show ?case by simp
next
case (ss2 rs1 rs2 r)
then show ?case
by (simp add: srewrites7)
next
case (ss3 r1 r2 rs)
then show ?case
by (simp add: srewrites7)
next
case (ss4 rs)
then show ?case
using rrewrite_srewrite.ss4 by fastforce
next
case (ss5 bs1 rs1 rsb)
then show ?case
apply(simp)
using bder_fuse_list map_map rrewrite_srewrite.ss5 srewrites.simps by blast
next
case (ss6 a1 a2 bs rsa rsb)
then show ?case
apply(simp only: map_append)
by (smt (verit, best) rder_bder_rerase list.simps(8) list.simps(9) local.ss6 rrewrite_srewrite.ss6 srewrites.simps)
qed
lemma rewrites_preserves_bder:
assumes "r1 \<leadsto>* r2"
shows "bder c r1 \<leadsto>* bder c r2"
using assms
apply(induction r1 r2 rule: rrewrites.induct)
apply(simp_all add: rewrite_preserves_bder rrewrites_trans)
done
lemma central:
shows "bders r s \<leadsto>* bders_simp r s"
proof(induct s arbitrary: r rule: rev_induct)
case Nil
then show "bders r [] \<leadsto>* bders_simp r []" by simp
next
case (snoc x xs)
have IH: "\<And>r. bders r xs \<leadsto>* bders_simp r xs" by fact
have "bders r (xs @ [x]) = bders (bders r xs) [x]" by (simp add: bders_append)
also have "... \<leadsto>* bders (bders_simp r xs) [x]" using IH
by (simp add: rewrites_preserves_bder)
also have "... \<leadsto>* bders_simp (bders_simp r xs) [x]" using IH
by (simp add: rewrites_to_bsimp)
finally show "bders r (xs @ [x]) \<leadsto>* bders_simp r (xs @ [x])"
by (simp add: bders_simp_append)
qed
lemma main_aux:
assumes "bnullable (bders r s)"
shows "bmkeps (bders r s) = bmkeps (bders_simp r s)"
proof -
have "bders r s \<leadsto>* bders_simp r s" by (rule central)
then
show "bmkeps (bders r s) = bmkeps (bders_simp r s)" using assms
by (rule rewrites_bmkeps)
qed
theorem main_blexer_simp:
shows "blexer r s = blexer_simp r s"
unfolding blexer_def blexer_simp_def
using b4 main_aux by simp
theorem blexersimp_correctness:
shows "lexer r s = blexer_simp r s"
using blexer_correctness main_blexer_simp by simp
lemma rerase_preimage:
shows "rerase r = RZERO \<Longrightarrow> r = AZERO"
apply(case_tac r)
apply simp+
done
lemma rerase_preimage2:
shows "rerase r = RONE \<Longrightarrow> \<exists>bs. r = AONE bs"
apply(case_tac r)
apply simp+
done
lemma rerase_preimage3:
shows "rerase r= RCHAR c \<Longrightarrow> \<exists>bs. r = ACHAR bs c"
apply(case_tac r)
apply simp+
done
lemma rerase_preimage4:
shows "rerase r = RSEQ r1 r2 \<Longrightarrow> \<exists>bs a1 a2. r = ASEQ bs a1 a2 \<and> rerase a1 = r1 \<and> rerase a2 = r2"
apply(case_tac r)
apply(simp)+
done
lemma rerase_preimage5:
shows "rerase r = RALTS rs \<Longrightarrow> \<exists>bs as. r = AALTs bs as \<and> map rerase as = rs"
apply(case_tac r)
apply(simp)+
done
lemma rerase_preimage6:
shows "rerase r = RSTAR r0 \<Longrightarrow> \<exists>bs a0. r = ASTAR bs a0 \<and> rerase a0 = r0 "
apply(case_tac r)
apply(simp)+
done
lemma map_rder_bder:
shows "\<lbrakk> \<And>xa a. \<lbrakk>xa \<in> set x; rerase a = xa\<rbrakk> \<Longrightarrow> rerase (bder c a) = rder c xa;
map rerase as = x\<rbrakk> \<Longrightarrow>
map rerase (map (bder c) as) = map (rder c) x"
apply(induct x arbitrary: as)
apply simp+
by force
lemma der_rerase:
shows "rerase a = r \<Longrightarrow> rerase (bder c a) = rder c r"
apply(induct r arbitrary: a)
apply simp
using rerase_preimage apply fastforce
using rerase_preimage2 apply force
apply (metis bder.simps(3) rder.simps(3) rerase.simps(1) rerase.simps(2) rerase_preimage3)
apply(insert rerase_preimage4)[1]
apply(subgoal_tac " \<exists>bs a1 a2. a = ASEQ bs a1 a2 \<and> rerase a1 = r1 \<and> rerase a2 = r2")
prefer 2
apply presburger
apply(erule exE)+
apply(erule conjE)+
apply(subgoal_tac " rerase (bder c a1) = rder c r1")
prefer 2
apply blast
apply(subgoal_tac " rerase (bder c a2) = rder c r2")
prefer 2
apply blast
apply(case_tac "rnullable r1")
apply(subgoal_tac "bnullable a1")
apply simp
using fuse_anything_doesnt_matter apply presburger
using rb_nullability apply blast
apply (metis bder.simps(5) rb_nullability rder.simps(5) rerase.simps(5))
apply simp
apply(insert rerase_preimage5)[1]
apply(subgoal_tac "\<exists>bs as. a = AALTs bs as \<and> map rerase as = x")
prefer 2
apply blast
apply(erule exE)+
apply(erule conjE)+
apply(subgoal_tac "map rerase (map (bder c) as) = map (rder c) x")
using bder.simps(4) rerase.simps(4) apply presburger
using map_rder_bder apply blast
using fuse_anything_doesnt_matter rerase_preimage6 by force
lemma der_rerase2:
shows "rerase (bder c a) = rder c (rerase a)"
using der_rerase by force
lemma ders_rerase:
shows "rerase (bders a s) = rders (rerase a) s"
apply(induct s rule: rev_induct)
apply simp
by (simp add: bders_append der_rerase rders_append)
lemma rerase_bsimp_ASEQ:
shows "rerase (bsimp_ASEQ x1 a1 a2) = rsimp_SEQ (rerase a1) (rerase a2)"
by (smt (verit, ccfv_SIG) SizeBound3.bsimp_ASEQ0 SizeBound3.bsimp_ASEQ2 basic_rsimp_SEQ_property1 basic_rsimp_SEQ_property2 basic_rsimp_SEQ_property3 bsimp_ASEQ.simps(1) bsimp_ASEQ1 fuse_anything_doesnt_matter rerase.simps(1) rerase.simps(2) rerase.simps(5) rerase_preimage rerase_preimage2 rsimp_SEQ.simps(1))
lemma rerase_bsimp_AALTs:
shows "rerase (bsimp_AALTs bs rs) = rsimp_ALTs (map rerase rs)"
apply(induct rs arbitrary: bs)
apply simp+
by (smt (verit, ccfv_threshold) Cons_eq_map_conv bsimp_AALTs.elims fuse_anything_doesnt_matter list.discI list.inject list.simps(9) rerase.simps(4) rsimp_ALTs.elims)
fun anonalt :: "arexp \<Rightarrow> bool"
where
"anonalt (AALTs bs2 rs) = False"
| "anonalt r = True"
fun agood :: "arexp \<Rightarrow> bool" where
"agood AZERO = False"
| "agood (AONE cs) = True"
| "agood (ACHAR cs c) = True"
| "agood (AALTs cs []) = False"
| "agood (AALTs cs [r]) = False"
| "agood (AALTs cs (r1#r2#rs)) = (distinct (map rerase (r1 # r2 # rs)) \<and>(\<forall>r' \<in> set (r1#r2#rs). agood r' \<and> anonalt r'))"
| "agood (ASEQ _ AZERO _) = False"
| "agood (ASEQ _ (AONE _) _) = False"
| "agood (ASEQ _ _ AZERO) = False"
| "agood (ASEQ cs r1 r2) = (agood r1 \<and> agood r2)"
| "agood (ASTAR cs r) = True"
fun anonnested :: "arexp \<Rightarrow> bool"
where
"anonnested (AALTs bs2 []) = True"
| "anonnested (AALTs bs2 ((AALTs bs1 rs1) # rs2)) = False"
| "anonnested (AALTs bs2 (r # rs2)) = anonnested (AALTs bs2 rs2)"
| "anonnested r = True"
lemma k0:
shows "flts (r # rs1) = flts [r] @ flts rs1"
apply(induct r arbitrary: rs1)
apply(auto)
done
lemma k00:
shows "flts (rs1 @ rs2) = flts rs1 @ flts rs2"
apply(induct rs1 arbitrary: rs2)
apply(auto)
by (metis append.assoc k0)
lemma bbbbs:
assumes "agood r" "r = AALTs bs1 rs"
shows "bsimp_AALTs bs (flts [r]) = AALTs bs (map (fuse bs1) rs)"
using assms
by (smt (verit, ccfv_SIG) Cons_eq_map_conv agood.simps(4) agood.simps(5) append.right_neutral bsimp_AALTs.elims flts.simps(1) flts.simps(3) list.map_disc_iff)
lemma bbbbs1:
shows "anonalt r \<or> (\<exists>bs rs. r = AALTs bs rs)"
by (meson anonalt.elims(3))
lemma good_fuse:
shows "agood (fuse bs r) = agood r"
apply(induct r arbitrary: bs)
apply(auto)
apply(case_tac r1)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r1)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac x2a)
apply(simp_all)
apply(case_tac list)
apply(simp_all)
apply(case_tac x2a)
apply(simp_all)
apply(case_tac list)
apply(simp_all)
done
lemma good0:
assumes "rs \<noteq> Nil" "\<forall>r \<in> set rs. anonalt r" "distinct (map rerase rs)"
shows "agood (bsimp_AALTs bs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. agood r)"
using assms
apply(induct bs rs rule: bsimp_AALTs.induct)
apply simp+
apply (simp add: good_fuse)
apply(subgoal_tac "bsimp_AALTs bs1 (v # vb # vc) = AALTs bs1 (v # vb # vc)")
prefer 2
using bsimp_AALTs.simps(3) apply presburger
apply(simp only:)
apply(subgoal_tac "agood (AALTs bs1 (v # vb # vc)) = ((\<forall>r \<in> (set (v # vb # vc)). agood r \<and> anonalt r) \<and> distinct (map rerase (v # vb # vc)))")
prefer 2
using agood.simps(6) apply blast
apply(simp only:)
apply(subgoal_tac "((\<forall>r\<in>set (v # vb # vc). agood r \<and> anonalt r) \<and> distinct (map rerase (v # vb # vc))) = ((\<forall>r\<in>set (v # vb # vc). agood r) \<and> distinct (map rerase (v # vb # vc)))")
prefer 2
apply blast
apply(simp only:)
apply(subgoal_tac "((\<forall>r \<in> set (v # vb # vc). agood r) \<and> distinct (map rerase (v # vb # vc))) = (\<forall> r \<in> set (v # vb # vc). agood r) ")
prefer 2
apply(subgoal_tac "distinct (map rerase (v # vb # vc)) = True")
prefer 2
sledgehammer
apply blast
prefer 2
apply force
apply simp
done
lemma nn11a:
assumes "anonalt r"
shows "anonalt (fuse bs r)"
using assms
apply(induct r)
apply(auto)
done
lemma flts0:
assumes "r \<noteq> AZERO" "anonalt r"
shows "flts [r] \<noteq> []"
using assms
apply(induct r)
apply(simp_all)
done
lemma flts1:
assumes "agood r"
shows "flts [r] \<noteq> []"
using assms
apply(induct r)
apply(simp_all)
apply(case_tac x2a)
apply(simp)
apply(simp)
done
lemma flts2:
assumes "agood r"
shows "\<forall>r' \<in> set (flts [r]). agood r' \<and> anonalt r'"
using assms
apply(induct r)
apply(simp)
apply(simp)
apply(simp)
prefer 2
apply(simp)
apply(auto)[1]
apply (metis bsimp_AALTs.elims agood.simps(4) agood.simps(5) agood.simps(6) good_fuse)
apply (metis bsimp_AALTs.elims agood.simps(4) agood.simps(5) agood.simps(6) nn11a)
apply fastforce
apply(simp)
done
lemma flts3:
assumes "\<forall>r \<in> set rs. agood r \<or> r = AZERO"
shows "\<forall>r \<in> set (flts rs). agood r"
using assms
apply(induct rs arbitrary: rule: flts.induct)
apply(simp_all)
by (metis SizeBound3.flts2 UnE append.right_neutral flts.simps(1) flts.simps(3) list.set_map)
lemma flts3b:
assumes "\<exists>r\<in>set rs. agood r"
shows "flts rs \<noteq> []"
using assms
apply(induct rs arbitrary: rule: flts.induct)
apply(simp)
apply(simp)
apply(simp)
apply(auto)
done
lemma k0a:
shows "flts [AALTs bs rs] = map (fuse bs) rs"
apply(simp)
done
lemma k0b:
assumes "anonalt r" "r \<noteq> AZERO"
shows "flts [r] = [r]"
using assms
apply(case_tac r)
apply(simp_all)
done
lemma flts4_nogood:
shows "bsimp_AALTs bs0 rs = AZERO \<Longrightarrow> \<forall>r \<in> set rs. \<not> agood r"
by (metis SizeBound3.flts3b arexp.distinct(7) bsimp_AALTs.elims flts.simps(1) flts.simps(2) fuse_anything_doesnt_matter rerase.simps(1) rerase_preimage)
lemma flts4_append:
shows "bsimp_AALTs bs0 (rs @ flts rsa) = AZERO \<Longrightarrow> bsimp_AALTs bs0 rs = AZERO"
by (metis append_is_Nil_conv arexp.simps(13) bsimp_AALTs.elims bsimp_AALTs.simps(1) butlast_append butlast_snoc)
lemma flts4:
assumes "bsimp_AALTs bs (flts rs) = AZERO"
shows "\<forall>r \<in> set rs. \<not> agood r"
using assms
apply(induct rs arbitrary: bs rule: flts.induct)
apply(auto)
defer
apply (metis (no_types, lifting) Nil_is_append_conv append_self_conv2 bsimp_AALTs.elims butlast.simps(2) butlast_append flts3b anonalt.simps(1) anonalt.simps(2))
apply (metis agood.simps(1) agood.simps(2) arexp.distinct(7) bsimp_AALTs.elims good_fuse list.distinct(1) list.inject)
apply (metis agood.simps(1) agood.simps(3) arexp.distinct(7) bsimp_AALTs.elims good_fuse list.distinct(1) list.inject)
apply (metis agood.simps(1) arexp.distinct(7) bsimp_AALTs.elims good_fuse list.discI list.inject)
apply (metis arexp.distinct(7) bsimp_AALTs.elims list.distinct(1) list.inject)
apply (metis agood.simps(1) agood.simps(33) arexp.distinct(7) bsimp_AALTs.elims good_fuse list.discI list.inject)
by (metis SizeBound3.bbbbs SizeBound3.k0a arexp.simps(13) flts4_append)
lemma flts_nil:
assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow>
agood (bsimp y) \<or> bsimp y = AZERO"
and "\<forall>r\<in>set rs. \<not> agood (bsimp r)"
shows "flts (map bsimp rs) = []"
using assms
apply(induct rs)
apply(simp)
apply(simp)
apply(subst k0)
apply(simp)
by force
lemma flts_nil2:
assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow>
agood (bsimp y) \<or> bsimp y = AZERO"
and "bsimp_AALTs bs (flts (map bsimp rs)) = AZERO"
shows "flts (map bsimp rs) = []"
using assms
apply(induct rs arbitrary: bs)
apply(simp)
apply(simp)
apply(subst k0)
apply(simp)
apply(subst (asm) k0)
apply(auto)
apply (metis flts.simps(1) flts.simps(2) flts4 k0 less_add_Suc1 list.set_intros(1))
by (metis flts.simps(2) flts4 k0 less_add_Suc1 list.set_intros(1))
lemma good_SEQ:
assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs"
shows "agood (ASEQ bs r1 r2) = (agood r1 \<and> agood r2)"
using assms
apply(case_tac r1)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
apply(case_tac r2)
apply(simp_all)
done
lemma asize0:
shows "0 < asize r"
apply(induct r)
apply(auto)
done
lemma nn1qq:
assumes "anonnested (AALTs bs rs)"
shows "\<nexists>bs1 rs1. AALTs bs1 rs1 \<in> set rs"
using assms
apply(induct rs rule: flts.induct)
apply(auto)
done
lemma nn1c:
assumes "\<forall>r \<in> set rs. anonnested r"
shows "\<forall>r \<in> set (flts rs). anonalt r"
using assms
apply(induct rs rule: flts.induct)
apply(auto)
apply(rule nn11a)
by (metis nn1qq anonalt.elims(3))
lemma n0:
shows "anonnested (AALTs bs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. anonalt r)"
apply(induct rs arbitrary: bs)
apply(auto)
apply (metis SizeBound3.nn1qq anonalt.elims(3) list.set_intros(1))
apply (metis SizeBound3.bbbbs1 SizeBound3.nn1qq list.set_intros(2))
by (metis anonalt.elims(2) anonnested.simps(3) anonnested.simps(4) anonnested.simps(5) anonnested.simps(6) anonnested.simps(7))
lemma nn1bb:
assumes "\<forall>r \<in> set rs. anonalt r"
shows "anonnested (bsimp_AALTs bs rs)"
using assms
apply(induct bs rs rule: bsimp_AALTs.induct)
apply(auto)
apply (metis nn11a anonalt.simps(1) anonnested.elims(3))
using n0 by auto
lemma nn10:
assumes "anonnested (AALTs cs rs)"
shows "anonnested (AALTs (bs @ cs) rs)"
using assms
apply(induct rs arbitrary: cs bs)
apply(simp_all)
apply(case_tac a)
apply(simp_all)
done
lemma nn1a:
assumes "anonnested r"
shows "anonnested (fuse bs r)"
using assms
apply(induct bs r arbitrary: rule: fuse.induct)
apply(simp_all add: nn10)
done
lemma dB_keeps_property:
shows "(\<forall>r \<in> set rs. P r) \<longrightarrow> (\<forall>r \<in> set (distinctBy rs rerase rset). P r)"
apply(induct rs arbitrary: rset)
apply simp+
done
lemma dB_filters_out:
shows "rerase a \<in> rset \<Longrightarrow> a \<notin> set (distinctBy rs rerase (rset))"
apply(induct rs arbitrary: rset)
apply simp
apply(case_tac "a = aa")
apply simp+
done
lemma dB_will_be_distinct:
shows "distinct (distinctBy rs rerase (insert (rerase a) rset)) \<Longrightarrow> distinct (a # (distinctBy rs rerase (insert (rerase a) rset)))"
using dB_filters_out by force
lemma dB_does_the_job2:
shows "distinct (distinctBy rs rerase rset)"
apply(induct rs arbitrary: rset)
apply simp
apply(case_tac "rerase a \<in> rset")
apply simp
apply(drule_tac x = "insert (rerase a) rset" in meta_spec)
apply(subgoal_tac "distinctBy (a # rs) rerase rset = a # distinctBy rs rerase (insert (rerase a ) rset)")
apply(simp only:)
using dB_will_be_distinct apply presburger
by auto
lemma dB_does_more_job:
shows "distinct (map rerase (distinctBy rs rerase rset))"
apply(induct rs arbitrary:rset)
apply simp
apply(case_tac "rerase a \<in> rset")
apply simp+
using dB_filters_out by force
lemma dB_mono2:
shows "rset \<subseteq> rset' \<Longrightarrow> distinctBy rs rerase rset = [] \<Longrightarrow> distinctBy rs rerase rset' = []"
apply(induct rs arbitrary: rset rset')
apply simp+
by (meson in_mono list.discI)
lemma nn1b:
shows "anonnested (bsimp r)"
apply(induct r)
apply(simp_all)
apply(case_tac "bsimp r1 = AZERO")
apply(simp)
apply(case_tac "bsimp r2 = AZERO")
apply(simp)
apply(case_tac "\<exists>bs. bsimp r1 = AONE bs")
apply(auto)[1]
apply (simp add: nn1a)
apply(subst bsimp_ASEQ1)
apply(auto)
apply(rule nn1bb)
apply(auto)
apply(subgoal_tac "\<forall>r \<in> set (flts (map bsimp x2a)). anonalt r")
prefer 2
apply (metis (mono_tags, lifting) SizeBound3.nn1c image_iff list.set_map)
apply(subgoal_tac "\<forall>r \<in> set (distinctBy (flts (map bsimp x2a)) rerase {}). anonalt r")
prefer 2
using dB_keeps_property apply presburger
by blast
lemma induct_smaller_elem_list:
shows "\<forall>r \<in> set list. asize r < Suc (sum_list (map asize list))"
apply(induct list)
apply simp+
by fastforce
lemma no0s_fltsbsimp:
shows "\<forall>r \<in> set (flts (map bsimp rs)). r \<noteq> AZERO"
oops
lemma flts_all0s:
shows "\<forall>r \<in> set rs. r = AZERO \<Longrightarrow> flts rs = []"
apply(induct rs)
apply simp+
done
lemma good1:
shows "agood (bsimp a) \<or> bsimp a = AZERO"
apply(induct a taking: asize rule: measure_induct)
apply(case_tac x)
apply(simp)
apply(simp)
apply(simp)
prefer 3
apply(simp)
prefer 2
(* AALTs case *)
apply(simp only:)
apply(case_tac "x52")
apply(simp)
(* AALTs list at least one - case *)
apply(simp only: )
apply(frule_tac x="a" in spec)
apply(drule mp)
apply(simp)
(* either first element is agood, or AZERO *)
apply(erule disjE)
prefer 2
apply(simp)
(* in the AZERO case, the size is smaller *)
apply(drule_tac x="AALTs x51 list" in spec)
apply(drule mp)
apply(simp add: asize0)
apply(subst (asm) bsimp.simps)
apply(subst (asm) bsimp.simps)
apply(assumption)
(* in the agood case *)
apply(frule_tac x="AALTs x51 list" in spec)
apply(drule mp)
apply(simp add: asize0)
apply(erule disjE)
apply(rule disjI1)
apply(simp add: good0)
apply(subst good0)
using SizeBound3.flts3b distinctBy.elims apply force
apply(subgoal_tac " Ball (set ( (flts (bsimp a # map bsimp list)))) anonalt")
prefer 2
apply (metis Cons_eq_map_conv SizeBound3.nn1b SizeBound3.nn1c ex_map_conv)
using dB_keeps_property apply presburger
sledgehammer
using dB_does_more_job apply presburger
apply(subgoal_tac " Ball (set ( (flts (bsimp a # map bsimp list)) )) agood")
using dB_keeps_property apply presburger
apply(subgoal_tac "\<forall>r \<in> (set (bsimp a # map bsimp list)). (agood r) \<or> (r = AZERO)")
using SizeBound3.flts3 apply blast
apply(subgoal_tac "\<forall>r \<in> set list. asize r < Suc (asize a + sum_list (map asize list))")
apply simp
apply(subgoal_tac "\<forall>r \<in> set list. asize r < Suc (sum_list (map asize list))")
apply fastforce
using induct_smaller_elem_list apply blast
apply simp
apply(subgoal_tac "agood (bsimp a)")
prefer 2
apply blast
apply(subgoal_tac "\<forall>r \<in> (set (map bsimp list)). r = AZERO \<or> agood r")
prefer 2
apply (metis add_Suc_right image_iff induct_smaller_elem_list list.set_map trans_less_add2)
apply(subgoal_tac "\<not>(\<exists> r\<in>set (map bsimp list). agood r)")
prefer 2
apply (metis SizeBound3.flts3 SizeBound3.flts3b distinctBy.elims empty_iff flts4_nogood list.set_intros(1))
apply(subgoal_tac "\<forall>r \<in> set (map bsimp list). r = AZERO")
prefer 2
apply blast
apply(subgoal_tac "flts (map bsimp list) = []")
prefer 2
using flts_all0s apply presburger
apply (smt (verit, del_insts) SizeBound3.flts2 SizeBound3.good0 SizeBound3.k0 dB_does_more_job dB_keeps_property distinctBy.simps(1) flts.simps(1))
apply(subgoal_tac "agood (bsimp x42) \<or> bsimp x42 = AZERO")
apply(subgoal_tac "agood (bsimp x43) \<or> bsimp x43 = AZERO")
apply(case_tac "bsimp x42 = AZERO")
apply simp
apply(case_tac "bsimp x43 = AZERO")
apply simp
apply(case_tac "\<exists>bs'. bsimp x42 = AONE bs'")
apply(erule exE)
apply simp
using good_fuse apply presburger
apply simp
apply(subgoal_tac "bsimp_ASEQ x41 (bsimp x42) (bsimp x43) = ASEQ x41 (bsimp x42) (bsimp x43)")
prefer 2
using bsimp_ASEQ1 apply presburger
using SizeBound3.good_SEQ apply presburger
using asize.simps(5) less_add_Suc2 apply presburger
by simp
lemma good1a:
assumes "RL (rerase a) \<noteq> {}"
shows "agood (bsimp a)"
using good1 assms
using RL_bsimp_rerase by force
lemma flts_append:
"flts (xs1 @ xs2) = flts xs1 @ flts xs2"
apply(induct xs1 arbitrary: xs2 rule: rev_induct)
apply(auto)
apply(case_tac xs)
apply(auto)
apply(case_tac x)
apply(auto)
apply(case_tac x)
apply(auto)
done
lemma g1:
assumes "agood (bsimp_AALTs bs rs)"
shows "bsimp_AALTs bs rs = AALTs bs rs \<or> (\<exists>r. rs = [r] \<and> bsimp_AALTs bs [r] = fuse bs r)"
using assms
apply(induct rs arbitrary: bs)
apply(simp)
apply(case_tac rs)
apply(simp only:)
apply(simp)
apply(case_tac list)
apply(simp)
by simp
lemma flts_0:
assumes "anonnested (AALTs bs rs)"
shows "\<forall>r \<in> set (flts rs). r \<noteq> AZERO"
using assms
apply(induct rs arbitrary: bs rule: flts.induct)
apply(simp)
apply(simp)
defer
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(rule ballI)
apply(simp)
done
lemma flts_0a:
assumes "anonnested (AALTs bs rs)"
shows "AZERO \<notin> set (flts rs)"
using assms
using flts_0 by blast
lemma qqq1:
shows "AZERO \<notin> set (flts (map bsimp rs))"
by (metis ex_map_conv flts3 agood.simps(1) good1)
fun nonazero :: "arexp \<Rightarrow> bool"
where
"nonazero AZERO = False"
| "nonazero r = True"
lemma flts_concat:
shows "flts rs = concat (map (\<lambda>r. flts [r]) rs)"
apply(induct rs)
apply(auto)
apply(subst k0)
apply(simp)
done
lemma flts_single1:
assumes "anonalt r" "nonazero r"
shows "flts [r] = [r]"
using assms
apply(induct r)
apply(auto)
done
lemma flts_qq:
assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow> agood y \<longrightarrow> bsimp y = y"
"\<forall>r'\<in>set rs. agood r' \<and> anonalt r'"
shows "flts (map bsimp rs) = rs"
using assms
apply(induct rs)
apply(simp)
apply(simp)
apply(subst k0)
apply(subgoal_tac "flts [bsimp a] = [a]")
prefer 2
apply(drule_tac x="a" in spec)
apply(drule mp)
apply(simp)
apply(auto)[1]
using agood.simps(1) k0b apply blast
apply(auto)[1]
done
lemma test:
assumes "agood r"
shows "bsimp r = r"
using assms
apply(induct r taking: "asize" rule: measure_induct)
apply(erule agood.elims)
apply(simp_all)
apply(subst k0)
apply(subst (2) k0)
apply(subst flts_qq)
apply(auto)[1]
apply(auto)[1]
oops
lemma bsimp_idem:
shows "bsimp (bsimp r) = bsimp r"
using test good1
oops
(*
lemma erase_preimage1:
assumes "anonalt r"
shows "erase r = ONE \<Longrightarrow> \<exists>bs. r = AONE bs"
apply(case_tac r)
apply simp+
using anonalt.simps(1) assms apply presburger
by fastforce
lemma erase_preimage_char:
assumes "anonalt r"
shows "erase r = CH c \<Longrightarrow> \<exists>bs. r = ACHAR bs c"
apply(case_tac r)
apply simp+
using assms apply fastforce
by simp
lemma erase_preimage_seq:
assumes "anonalt r"
shows "erase r = SEQ r1 r2 \<Longrightarrow> \<exists>bs a1 a2. r = ASEQ bs a1 a2 \<and> erase a1 = r1 \<and> erase a2 = r2"
apply(case_tac r)
apply simp+
using assms apply fastforce
by simp
lemma rerase_preimage_seq:
assumes "anonalt r"
shows "rerase r = RSEQ r1 r2 \<Longrightarrow> \<exists>bs a1 a2. r = ASEQ bs a1 a2 \<and> rerase a1 = r1 \<and> rerase a2 = r2 "
using rerase_preimage4 by presburger
lemma seq_recursive_equality:
shows "\<lbrakk>r1 = a1; r2 = a2\<rbrakk> \<Longrightarrow> SEQ r1 r2 = SEQ a1 a2"
by meson
lemma almost_identical_image:
assumes "agood r" "\<forall>r \<in> rset. agood r"
shows "erase r \<in> erase ` rset \<Longrightarrow> \<exists>r' \<in> rset. erase r' = erase r"
by auto
lemma goodalts_never_change:
assumes "r = AALTs bs rs" "agood r"
shows "\<exists>r1 r2. erase r = ALT r1 r2"
by (metis agood.simps(4) agood.simps(5) assms(1) assms(2) bmkepss.cases erase.simps(6))
fun shape_preserving :: "arexp \<Rightarrow> bool" where
"shape_preserving AZERO = True"
| "shape_preserving (AONE bs) = True"
| "shape_preserving (ACHAR bs c) = True"
| "shape_preserving (AALTs bs []) = False"
| "shape_preserving (AALTs bs [a]) = False"
| "shape_preserving (AALTs bs (a1 # a2 # rs)) = (\<forall>r \<in> set (a1 # a2 # rs). shape_preserving r)"
| "shape_preserving (ASEQ bs r1 r2) = (shape_preserving r1 \<and> shape_preserving r2)"
| "shape_preserving (ASTAR bs r) = shape_preserving r"
lemma good_shape_preserving:
assumes "\<nexists>bs r0. r = ASTAR bs r0"
shows "agood r \<Longrightarrow> shape_preserving r"
using assms
apply(induct r)
prefer 6
apply blast
apply simp
oops
lemma shadow_arexp_rerase_erase:
shows "\<lbrakk>agood r; agood r'; erase r = erase r'\<rbrakk> \<Longrightarrow> rerase r = rerase r'"
apply(induct r )
apply simp
apply(induct r')
apply simp+
apply (metis goodalts_never_change rexp.distinct(15))
apply simp+
apply (metis anonalt.elims(3) erase_preimage_char goodalts_never_change rerase.simps(3) rexp.distinct(21))
apply(induct r')
apply simp
apply simp
apply simp
apply(subgoal_tac "agood r1")
prefer 2
apply (metis SizeBound3.good_SEQ agood.simps(10) agood.simps(11) agood.simps(2) agood.simps(3) agood.simps(33) agood.simps(7) bsimp.cases)
apply(subgoal_tac "agood r2")
apply(subgoal_tac "agood r'1")
apply(subgoal_tac "agood r'2")
apply(subgoal_tac "rerase r'1 = rerase r1")
apply(subgoal_tac "rerase r'2 = rerase r2")
using rerase.simps(5) apply presburger
oops
lemma rerase_erase_good:
assumes "agood r" "\<forall>r \<in> rset. agood r"
shows "erase r \<in> erase ` rset \<Longrightarrow> rerase r \<in> rerase ` rset"
using assms
apply(case_tac r)
apply simp+
oops
lemma rerase_erase_both:
assumes "\<forall>r \<in> rset. agood r" "agood r"
shows "(rerase r \<in> (rerase ` rset)) \<longleftrightarrow> (erase r \<in> (erase ` rset))"
using assms
apply(induct r )
apply force
apply simp
apply(case_tac "RONE \<in> rerase ` rset")
apply(subgoal_tac "\<exists>bs. (AONE bs) \<in> rset")
apply (metis erase.simps(2) rev_image_eqI)
apply (metis image_iff rerase_preimage2)
apply(subgoal_tac "\<nexists>bs. (AONE bs) \<in> rset")
apply(subgoal_tac "ONE \<notin> erase ` rset")
apply blast
sledgehammer
apply (metis erase_preimage1 image_iff)
apply (metis rerase.simps(2) rev_image_eqI)
apply (smt (verit, best) erase.simps(3) erase_preimage_char image_iff rerase.simps(3) rerase_preimage3)
(* apply simp
apply(subgoal_tac "(RSEQ (rerase r1) (rerase r2) \<in> rerase ` rset) \<Longrightarrow> (SEQ (erase r1) (erase r2) \<in> erase ` rset)")
prefer 2
apply(subgoal_tac "\<exists>bs a1 a2. (ASEQ bs a1 a2) \<in> rset \<and> rerase a1 = rerase r1 \<and> rerase a2 = rerase r2")
prefer 2
apply (metis (full_types) image_iff rerase_preimage4)
apply(erule exE)+
apply(subgoal_tac "erase (ASEQ bs a1 a2) \<in> (erase ` rset) ")
apply(subgoal_tac "SEQ (erase a1) (erase a2) \<in> (erase ` rset)")
apply(subgoal_tac "SEQ (erase a1) (erase a2) = SEQ (erase r1) (erase r2)")
apply metis
apply(erule conjE)+*)
apply(drule_tac x = "rset" in meta_spec)+
oops
lemma rerase_pushin1_general:
assumes "\<forall>r \<in> set rs. agood r"
shows "map rerase (distinctBy rs erase (erase ` rset)) = rdistinct (map rerase rs) (rerase ` rset)"
apply(induct rs arbitrary: rset)
apply simp+
apply(case_tac "erase a \<in> erase ` rset")
apply simp
oops
lemma rerase_erase:
assumes "\<forall>r \<in> set as. agood r \<and> anonalt r"
shows "rdistinct (map rerase as) (rerase ` rset) = map rerase (distinctBy as erase (erase ` rset))"
using assms
apply(induct as)
apply simp+
sorry
lemma rerase_pushin1:
assumes "\<forall>r \<in> set rs. anonalt r \<and> agood r"
shows "map rerase (distinctBy rs erase {}) = rdistinct (map rerase rs) {}"
apply(insert rerase_erase)
by (metis assms image_empty)
*)
lemma nonalt_flts : shows
"\<forall>r \<in> set (flts (map bsimp rs)). r \<noteq> AZERO"
using SizeBound3.qqq1 by force
lemma rerase_map_bsimp:
assumes "\<And> r. r \<in> set x2a \<Longrightarrow> rerase (bsimp r) = (rsimp \<circ> rerase) r"
shows " map rerase (map bsimp x2a) = map (rsimp \<circ> rerase) x2a "
using assms
apply(induct x2a)
apply simp
apply(subgoal_tac "a \<in> set (a # x2a)")
prefer 2
apply (meson list.set_intros(1))
apply(subgoal_tac "rerase (bsimp a ) = (rsimp \<circ> rerase) a")
apply simp
by presburger
lemma rerase_flts:
shows "map rerase (flts rs) = rflts (map rerase rs)"
apply(induct rs)
apply simp+
apply(case_tac a)
apply simp+
apply(simp add: rerase_fuse)
apply simp
done
lemma rerase_dB:
shows "map rerase (distinctBy rs rerase acc) = rdistinct (map rerase rs) acc"
apply(induct rs arbitrary: acc)
apply simp+
done
lemma rerase_earlier_later_same:
assumes " \<And>r. r \<in> set x2a \<Longrightarrow> rerase (bsimp r) = rsimp (rerase r)"
shows " (map rerase (distinctBy (flts (map bsimp x2a)) rerase {})) =
(rdistinct (rflts (map (rsimp \<circ> rerase) x2a)) {})"
apply(subst rerase_dB)
apply(subst rerase_flts)
apply(subst rerase_map_bsimp)
apply auto
using assms
apply simp
done
lemma simp_rerase:
shows "rerase (bsimp a) = rsimp (rerase a)"
apply(induct a)
apply simp+
using rerase_bsimp_ASEQ apply presburger
apply simp
apply(subst rerase_bsimp_AALTs)
apply(subgoal_tac "map rerase (distinctBy (flts (map bsimp x2a)) rerase {}) = rdistinct (rflts (map (rsimp \<circ> rerase) x2a)) {}")
apply simp
using rerase_earlier_later_same apply presburger
apply simp
done
lemma rders_simp_size:
shows " rders_simp (rerase r) s = rerase (bders_simp r s)"
apply(induct s rule: rev_induct)
apply simp
apply(subst rders_simp_append)
apply(subst bders_simp_append)
apply(subgoal_tac "rders_simp (rerase r ) xs = rerase (bders_simp r xs)")
apply(simp only:)
apply simp
apply (simp add: der_rerase2 simp_rerase)
by simp
corollary aders_simp_finiteness:
assumes "\<exists>N. \<forall>s. rsize (rders_simp (rerase r) s) \<le> N"
shows " \<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
using assms
apply(subgoal_tac "\<forall>s. asize (bders_simp r s) = rsize (rerase (bders_simp r s))")
apply(erule exE)
apply(rule_tac x = "N" in exI)
using rders_simp_size apply auto[1]
using asize_rsize by auto
theorem annotated_size_bound:
shows "\<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
apply(insert aders_simp_finiteness)
by (simp add: rders_simp_bounded)
end