theory ClosedFormsBounds
imports "GeneralRegexBound" "ClosedForms"
begin
lemma alts_closed_form_bounded: shows
"\<forall>r \<in> set rs. \<forall>s. rsize(rders_simp r s ) \<le> N \<Longrightarrow>
rsize (rders_simp (RALTS rs ) s) \<le> max (Suc ( N * (card (sizeNregex N)))) (rsize (RALTS rs) )"
apply(induct s)
apply simp
apply(insert alts_closed_form_variant)
sorry
lemma star_closed_form_bounded_by_rdistinct_list_estimate:
shows "rsize (rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
(star_updates s r0 [[c]]) ) ))) \<le>
Suc (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
(star_updates s r0 [[c]]) ) {}) ) )"
sorry
lemma distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size:
shows "\<forall>r\<in> set rs. (rsize r ) \<le> N \<Longrightarrow> sum_list (map rsize (rdistinct rs {})) \<le>
(card (sizeNregex N))* N"
sorry
lemma star_control_bounded:
shows "\<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>
(sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0))
(star_updates s r0 [[c]]) ) {}) ) ) \<le>
(card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * (Suc (N + rsize (RSTAR r0)))
"
sorry
lemma star_control_variant:
assumes "\<forall>s. rsize (rders_simp r0 s) \<le> N"
shows"Suc
(sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0))
(star_updates list r0 [[a]])) {})))
\<le> (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0))) "
apply(subgoal_tac "(sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0))
(star_updates list r0 [[a]])) {})))
\<le> ( (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0))) ")
prefer 2
using assms star_control_bounded apply presburger
by simp
lemma star_closed_form_bounded:
shows "\<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>
rsize (rders_simp (RSTAR r0) s) \<le>
max ( (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * (Suc (N + rsize (RSTAR r0))))) (rsize (RSTAR r0))"
apply(case_tac s)
apply simp
apply(subgoal_tac " rsize (rders_simp (RSTAR r0) (a # list)) =
rsize (rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates list r0 [[a]]) ) )))")
prefer 2
using star_closed_form apply presburger
apply(subgoal_tac "rsize (rsimp (
RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates list r0 [[a]]) ) )))
\<le> Suc (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
(star_updates list r0 [[a]]) ) {}) ) )")
prefer 2
using star_closed_form_bounded_by_rdistinct_list_estimate apply presburger
apply(subgoal_tac "Suc (sum_list
(map rsize
(rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) (star_updates list r0 [[a]])) {})))
\<le> (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0))) ")
apply auto[1]
using star_control_variant by blast
lemma seq_list_estimate_control: shows
" rsize (rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1))))
\<le> Suc (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {})))"
sorry
lemma rdistinct_equality1:
shows "a \<notin> ss \<Longrightarrow> rdistinct (a # rs) ss = a # rdistinct rs (insert a ss) "
by auto
lemma larger_acc_smaller_distinct_res0:
shows " ss \<subseteq> SS \<Longrightarrow> sum_list (map rsize (rdistinct rs SS)) \<le> sum_list (map rsize (rdistinct rs ss))"
apply(induct rs arbitrary: ss SS)
apply simp
apply(case_tac "a \<in> ss")
apply(subgoal_tac "a \<in> SS")
apply simp
apply blast
apply(case_tac "a \<in> SS")
apply simp
apply(subgoal_tac "insert a ss \<subseteq> SS")
apply simp
apply (simp add: trans_le_add2)
apply blast
apply(simp)
apply(subgoal_tac "insert a ss \<subseteq> insert a SS")
apply blast
by blast
lemma larger_acc_smaller_distinct_res:
shows " (sum_list (map rsize (rdistinct rs ss))) \<ge> (sum_list (map rsize (rdistinct rs (insert a ss))))"
sorry
lemma size_list_triangle1:
shows "sum_list (map rsize (a # (rdistinct as ss))) \<ge> rsize a + sum_list (map rsize (rdistinct as (insert a ss)))"
by (simp add: larger_acc_smaller_distinct_res)
lemma triangle_inequality_distinct:
shows "sum_list (map rsize (rdistinct (a # rs) ss)) \<le> rsize a + (sum_list (map rsize (rdistinct rs ss)))"
apply(case_tac "a \<in> ss")
apply simp
apply(subst rdistinct_equality1)
apply simp
using size_list_triangle1 by auto
lemma same_regex_property_after_map:
shows "\<forall>s. P (f r2 s) \<Longrightarrow> \<forall>r \<in> set (map (f r2) Ss). P r"
by auto
lemma same_property_after_distinct:
shows " \<forall>r \<in> set (map (f r2) Ss). P r \<Longrightarrow> \<forall>r \<in> set (rdistinct (map (f r2) Ss) xset). P r"
apply(induct Ss arbitrary: xset)
apply simp
by auto
lemma same_regex_property_after_distinct:
shows "\<forall>s. P (f r2 s) \<Longrightarrow> \<forall>r \<in> set (rdistinct (map (f r2) Ss) xset). P r"
apply(rule same_property_after_distinct)
apply(rule same_regex_property_after_map)
by simp
lemma map_ders_is_list_of_ders:
shows "\<forall>s. rsize (rders_simp r2 s) \<le> N2 \<Longrightarrow>
\<forall>r \<in> set (rdistinct (map (rders_simp r2) Ss) {}). rsize r \<le> N2"
apply(rule same_regex_property_after_distinct)
by simp
lemma seq_estimate_bounded:
assumes "\<forall>s. rsize (rders_simp r1 s) \<le> N1" and "\<forall>s. rsize (rders_simp r2 s) \<le> N2"
shows
"Suc (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}))) \<le>
Suc (Suc (N1 + (rsize r2)) + (N2 * card (sizeNregex N2)))"
apply(subgoal_tac " (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}))) \<le>
(Suc (N1 + (rsize r2)) + (N2 * card (sizeNregex N2)))")
apply force
apply(subgoal_tac " (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}))) \<le>
(rsize (RSEQ (rders_simp r1 s) r2)) + (sum_list (map rsize (rdistinct (map (rders_simp r2) (vsuf s r1)) {})) )")
prefer 2
using triangle_inequality_distinct apply blast
apply(subgoal_tac " sum_list (map rsize (rdistinct (map (rders_simp r2) (vsuf s r1)) {})) \<le> N2 * card (sizeNregex N2) ")
apply(subgoal_tac "rsize (RSEQ (rders_simp r1 s) r2) \<le> Suc (N1 + rsize r2)")
apply linarith
apply (simp add: assms(1))
apply(subgoal_tac "\<forall>r \<in> set (rdistinct (map (rders_simp r2) (vsuf s r1)) {}). rsize r \<le> N2")
apply (metis (no_types, opaque_lifting) assms(2) distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size ex_map_conv mult.commute)
using assms(2) map_ders_is_list_of_ders by blast
lemma seq_closed_form_bounded: shows
"\<lbrakk>\<forall>s. rsize (rders_simp r1 s) \<le> N1 ; \<forall>s. rsize (rders_simp r2 s) \<le> N2\<rbrakk> \<Longrightarrow>
rsize (rders_simp (RSEQ r1 r2) s) \<le>
max (Suc (Suc (N1 + (rsize r2)) + (N2 * card (sizeNregex N2)))) (rsize (RSEQ r1 r2)) "
apply(case_tac s)
apply simp
apply(subgoal_tac " (rders_simp (RSEQ r1 r2) s) =
rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))")
prefer 2
using seq_closed_form_variant apply blast
apply(subgoal_tac "rsize (rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1))))
\<le>
Suc (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {})))")
apply(subgoal_tac "Suc (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {})))
\<le> Suc (Suc (N1 + (rsize r2)) + (N2 * card (sizeNregex N2)))")
prefer 2
using seq_estimate_bounded apply blast
apply(subgoal_tac "rsize (rders_simp (RSEQ r1 r2) s) \<le> Suc (Suc (N1 + rsize r2) + N2 * card (sizeNregex N2))")
using le_max_iff_disj apply blast
apply auto[1]
using seq_list_estimate_control by presburger
lemma rders_simp_bounded: shows
"\<exists>N. \<forall>s. rsize (rders_simp r s) \<le> N"
apply(induct r)
apply(rule_tac x = "Suc 0 " in exI)
using three_easy_cases0 apply force
using three_easy_cases1 apply blast
using three_easy_casesC apply blast
using seq_closed_form_bounded apply blast
apply (metis alts_closed_form_bounded size_list_estimation')
using star_closed_form_bounded by blast
(*Obsolete materials*)
end