theory GeneralRegexBound imports
"BasicIdentities"
begin
lemma non_zero_size:
shows "rsize r \<ge> Suc 0"
apply(induct r)
apply auto done
corollary size_geq1:
shows "rsize r \<ge> 1"
by (simp add: non_zero_size)
definition SEQ_set where
"SEQ_set A n \<equiv> {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A \<and> rsize r1 + rsize r2 \<le> n}"
definition SEQ_set_cartesian where
"SEQ_set_cartesian A n = {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A}"
definition ALT_set where
"ALT_set A n \<equiv> {RALTS rs | rs. set rs \<subseteq> A \<and> sum_list (map rsize rs) \<le> n}"
definition
"sizeNregex N \<equiv> {r. rsize r \<le> N}"
lemma sizenregex_induct:
shows "sizeNregex (Suc n) = sizeNregex n \<union> {RZERO, RONE, RALTS []} \<union> {RCHAR c| c. True} \<union>
SEQ_set ( sizeNregex n) n \<union> ALT_set (sizeNregex n) n \<union> (RSTAR ` (sizeNregex n))"
sorry
lemma chars_finite:
shows "finite (RCHAR ` (UNIV::(char set)))"
apply(simp)
done
thm full_SetCompr_eq
lemma size1finite:
shows "finite (sizeNregex (Suc 0))"
apply(subst sizenregex_induct)
apply(subst finite_Un)+
apply(subgoal_tac "sizeNregex 0 = {}")
apply(rule conjI)+
apply (metis Collect_empty_eq finite.emptyI non_zero_size not_less_eq_eq sizeNregex_def)
apply simp
apply (simp add: full_SetCompr_eq)
apply (simp add: SEQ_set_def)
apply (simp add: ALT_set_def)
apply(simp add: full_SetCompr_eq)
using non_zero_size not_less_eq_eq sizeNregex_def by fastforce
lemma seq_included_in_cart:
shows "SEQ_set A n \<subseteq> SEQ_set_cartesian A n"
using SEQ_set_cartesian_def SEQ_set_def by fastforce
lemma finite_seq:
shows " finite (sizeNregex n) \<Longrightarrow> finite (SEQ_set (sizeNregex n) n)"
apply(rule finite_subset)
sorry
lemma finite_size_n:
shows "finite (sizeNregex n)"
apply(induct n)
apply (metis Collect_empty_eq finite.emptyI non_zero_size not_less_eq_eq sizeNregex_def)
apply(subst sizenregex_induct)
apply(subst finite_Un)+
apply(rule conjI)+
apply simp
apply simp
apply (simp add: full_SetCompr_eq)
sorry
lemma three_easy_cases0: shows
"rsize (rders_simp RZERO s) \<le> Suc 0"
sorry
lemma three_easy_cases1: shows
"rsize (rders_simp RONE s) \<le> Suc 0"
sorry
lemma three_easy_casesC: shows
"rsize (rders_simp (RCHAR c) s) \<le> Suc 0"
sorry
end