import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: List[Boolean]) extends ARexp
case class ACHAR(bs: List[Boolean], c: Char) extends ARexp
case class AALT(bs: List[Boolean], r1: ARexp, r2: ARexp) extends ARexp
case class ASEQ(bs: List[Boolean], r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: List[Boolean], r: ARexp) extends ARexp
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
// translation into ARexps
def fuse(bs: List[Boolean], r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
case ACHAR(cs, c) => ACHAR(bs ++ cs, c)
case AALT(cs, r1, r2) => AALT(bs ++ cs, r1, r2)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
}
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
case CHAR(c) => ACHAR(Nil, c)
case ALT(r1, r2) => AALT(Nil, fuse(List(false), internalise(r1)), fuse(List(true), internalise(r2)))
case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
case STAR(r) => ASTAR(Nil, internalise(r))
case RECD(x, r) => internalise(r)
}
internalise(("a" | "ab") ~ ("b" | ""))
def decode_aux(r: Rexp, bs: List[Boolean]) : (Val, List[Boolean]) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
case (CHAR(c), bs) => (Chr(c), bs)
case (ALT(r1, r2), false::bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Left(v), bs1)
}
case (ALT(r1, r2), true::bs) => {
val (v, bs1) = decode_aux(r2, bs)
(Right(v), bs1)
}
case (SEQ(r1, r2), bs) => {
val (v1, bs1) = decode_aux(r1, bs)
val (v2, bs2) = decode_aux(r2, bs1)
(Sequ(v1, v2), bs2)
}
case (STAR(r1), false::bs) => {
val (v, bs1) = decode_aux(r1, bs)
val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
(Stars(v::vs), bs2)
}
case (STAR(_), true::bs) => (Stars(Nil), bs)
case (RECD(x, r1), bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Rec(x, v), bs1)
}
}
def decode(r: Rexp, bs: List[Boolean]) = decode_aux(r, bs) match {
case (v, Nil) => v
case _ => throw new Exception("Not decodable")
}
// nullable function: tests whether the aregular
// expression can recognise the empty string
def nullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
case ACHAR(_,_) => false
case AALT(_, r1, r2) => nullable(r1) || nullable(r2)
case ASEQ(_, r1, r2) => nullable(r1) && nullable(r2)
case ASTAR(_, _) => true
}
def mkepsBC(r: ARexp) : List[Boolean] = r match {
case AONE(bs) => bs
case AALT(bs, r1, r2) =>
if (nullable(r1)) bs ++ mkepsBC(r1) else bs ++ mkepsBC(r2)
case ASEQ(bs, r1, r2) => bs ++ mkepsBC(r1) ++ mkepsBC(r2)
case ASTAR(bs, r) => bs ++ List(true)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
case ACHAR(bs, d) => if (c == d) AONE(bs) else AZERO
case AALT(bs, r1, r2) => AALT(bs, der(c, r1), der(c, r2))
case ASEQ(bs, r1, r2) =>
if (nullable(r1)) AALT(bs, ASEQ(Nil, der(c, r1), r2), fuse(mkepsBC(r1), der(c, r2)))
else ASEQ(bs, der(c, r1), r2)
case ASTAR(bs, r) => ASEQ(bs, fuse(List(false), der(c, r)), ASTAR(Nil, r))
}
// derivative w.r.t. a string (iterates der)
@tailrec
def ders (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// main unsimplified lexing function (produces a value)
def lex(r: ARexp, s: List[Char]) : List[Boolean] = s match {
case Nil => if (nullable(r)) mkepsBC(r) else throw new Exception("Not matched")
case c::cs => lex(der(c, r), cs)
}
def pre_lexing(r: Rexp, s: String) = lex(internalise(r), s.toList)
def lexing(r: Rexp, s: String) : Val = decode(r, lex(internalise(r), s.toList))
def simp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (simp(r1), simp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALT(bs1, r1, r2) => (simp(r1), simp(r2)) match {
case (AZERO, r2s) => fuse(bs1, r2s)
case (r1s, AZERO) => fuse(bs1, r1s)
case (r1s, r2s) => AALT(bs1, r1s, r2s)
}
case r => r
}
def lex_simp(r: ARexp, s: List[Char]) : List[Boolean] = s match {
case Nil => if (nullable(r)) mkepsBC(r) else throw new Exception("Not matched")
case c::cs => lex(simp(der(c, r)), cs)
}
def lexing_simp(r: Rexp, s: String) : Val = decode(r, lex_simp(internalise(r), s.toList))
// extracts a string from value
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// Some Tests
//============
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
val rf = ("a" | "ab") ~ ("ab" | "")
println(pre_lexing(rf, "ab"))
println(lexing(rf, "ab"))
println(lexing_simp(rf, "ab"))
val r0 = ("a" | "ab") ~ ("b" | "")
println(pre_lexing(r0, "ab"))
println(lexing(r0, "ab"))
println(lexing_simp(r0, "ab"))
val r1 = ("a" | "ab") ~ ("bcd" | "cd")
println(lexing(r1, "abcd"))
println(lexing_simp(r1, "abcd"))
println(lexing((("" | "a") ~ ("ab" | "b")), "ab"))
println(lexing_simp((("" | "a") ~ ("ab" | "b")), "ab"))
println(lexing((("" | "a") ~ ("b" | "ab")), "ab"))
println(lexing_simp((("" | "a") ~ ("b" | "ab")), "ab"))
println(lexing((("" | "a") ~ ("c" | "ab")), "ab"))
println(lexing_simp((("" | "a") ~ ("c" | "ab")), "ab"))
// Two Simple Tests for the While Language
//========================================
// Lexing Rules
def PLUS(r: Rexp) = r ~ r.%
val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
val ID = SYM ~ (SYM | DIGIT).%
val NUM = PLUS(DIGIT)
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
val SEMI: Rexp = ";"
val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
val WHITESPACE = PLUS(" " | "\n" | "\t")
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("b" $ (BEGIN | END)) |
("w" $ WHITESPACE)).%
println("prog0 test")
val prog0 = """read n"""
println(env(lexing(WHILE_REGS, prog0)))
println(env(lexing_simp(WHILE_REGS, prog0)))
println("prog1 test")
val prog1 = """read n; write (n)"""
println(env(lexing(WHILE_REGS, prog1)))
println(env(lexing_simp(WHILE_REGS, prog1)))
// Sulzmann's tests
//==================
val sulzmann = ("a" | "b" | "ab").%
println(lexing(sulzmann, "a" * 10))
println(lexing_simp(sulzmann, "a" * 10))
for (i <- 1 to 6501 by 500) {
println(i + ": " + "%.5f".format(time_needed(1, lexing_simp(sulzmann, "a" * i))))
}
for (i <- 1 to 16 by 5) {
println(i + ": " + "%.5f".format(time_needed(1, lexing_simp(sulzmann, "ab" * i))))
}