theory Fun
imports Lexer "~~/src/HOL/Library/Infinite_Set"
begin
section {* some fun tests *}
fun
zeroable :: "rexp ⇒ bool"
where
"zeroable (ZERO) = True"
| "zeroable (ONE) = False"
| "zeroable (CHAR c) = False"
| "zeroable (ALT r1 r2) = (zeroable r1 ∧ zeroable r2)"
| "zeroable (SEQ r1 r2) = (zeroable r1 ∨ zeroable r2)"
| "zeroable (STAR r) = False"
lemma zeroable_correctness:
shows "zeroable r ⟷ L r = {}"
apply(induct r rule: zeroable.induct)
apply(auto simp add: Sequ_def)
done
fun
atmostempty :: "rexp ⇒ bool"
where
"atmostempty (ZERO) = True"
| "atmostempty (ONE) = True"
| "atmostempty (CHAR c) = False"
| "atmostempty (ALT r1 r2) = (atmostempty r1 ∧ atmostempty r2)"
| "atmostempty (SEQ r1 r2) = ((zeroable r1) ∨ (zeroable r2) ∨ (atmostempty r1 ∧ atmostempty r2))"
| "atmostempty (STAR r) = atmostempty r"
fun
somechars :: "rexp ⇒ bool"
where
"somechars (ZERO) = False"
| "somechars (ONE) = False"
| "somechars (CHAR c) = True"
| "somechars (ALT r1 r2) = (somechars r1 ∨ somechars r2)"
| "somechars (SEQ r1 r2) = ((¬zeroable r1 ∧ somechars r2) ∨ (¬zeroable r2 ∧ somechars r1) ∨
(somechars r1 ∧ nullable r2) ∨ (somechars r2 ∧ nullable r1))"
| "somechars (STAR r) = somechars r"
lemma somechars_correctness:
shows "somechars r ⟷ (∃s. s ≠ [] ∧ s ∈ L r)"
apply(induct r rule: somechars.induct)
apply(simp)
apply(simp)
apply(simp)
apply(auto)[1]
prefer 2
apply(simp)
apply(rule iffI)
apply(auto)[1]
apply (metis Star_decomp neq_Nil_conv)
apply(rule iffI)
apply(simp add: Sequ_def zeroable_correctness nullable_correctness)
apply(auto)[1]
apply(simp add: Sequ_def zeroable_correctness nullable_correctness)
apply(auto)[1]
done
lemma atmostempty_correctness_aux:
shows "atmostempty r ⟷ ¬somechars r"
apply(induct r)
apply(simp_all)
apply(auto simp add: zeroable_correctness nullable_correctness somechars_correctness)
done
lemma atmostempty_correctness:
shows "atmostempty r ⟷ L r ⊆ {[]}"
by(auto simp add: atmostempty_correctness_aux somechars_correctness)
fun
infinitestrings :: "rexp ⇒ bool"
where
"infinitestrings (ZERO) = False"
| "infinitestrings (ONE) = False"
| "infinitestrings (CHAR c) = False"
| "infinitestrings (ALT r1 r2) = (infinitestrings r1 ∨ infinitestrings r2)"
| "infinitestrings (SEQ r1 r2) = ((¬zeroable r1 ∧ infinitestrings r2) ∨ (¬zeroable r2 ∧ infinitestrings r1))"
| "infinitestrings (STAR r) = (¬atmostempty r)"
lemma Star_atmostempty:
assumes "A ⊆ {[]}"
shows "A⋆ ⊆ {[]}"
using assms
using Star_string concat_eq_Nil_conv empty_iff insert_iff subsetI subset_singletonD by fastforce
lemma Star_empty_string_finite:
shows "finite ({[]}⋆)"
using Star_atmostempty infinite_super by auto
lemma Star_empty_finite:
shows "finite ({}⋆)"
using Star_atmostempty infinite_super by auto
lemma Star_concat_replicate:
assumes "s ∈ A"
shows "concat (replicate n s) ∈ A⋆"
using assms
by (induct n) (auto)
lemma concat_replicate_inj:
assumes "concat (replicate n s) = concat (replicate m s)" "s ≠ []"
shows "n = m"
using assms
apply(induct n arbitrary: m)
apply(auto)[1]
apply(auto)
apply(case_tac m)
apply(clarify)
apply(simp only: replicate.simps concat.simps)
apply blast
by simp
lemma A0:
assumes "finite (A ;; B)" "B ≠ {}"
shows "finite A"
apply(subgoal_tac "∃s. s ∈ B")
apply(erule exE)
apply(subgoal_tac "finite {s1 @ s |s1. s1 ∈ A}")
apply(rule_tac f="λs1. s1 @ s" in finite_imageD)
apply(simp add: image_def)
apply(smt Collect_cong)
apply(simp add: inj_on_def)
apply(rule_tac B="A ;; B" in finite_subset)
apply(auto simp add: Sequ_def)[1]
apply(rule assms(1))
using assms(2) by auto
lemma A1:
assumes "finite (A ;; B)" "A ≠ {}"
shows "finite B"
apply(subgoal_tac "∃s. s ∈ A")
apply(erule exE)
apply(subgoal_tac "finite {s @ s1 |s1. s1 ∈ B}")
apply(rule_tac f="λs1. s @ s1" in finite_imageD)
apply(simp add: image_def)
apply(smt Collect_cong)
apply(simp add: inj_on_def)
apply(rule_tac B="A ;; B" in finite_subset)
apply(auto simp add: Sequ_def)[1]
apply(rule assms(1))
using assms(2) by auto
lemma Sequ_Prod_finite:
assumes "A ≠ {}" "B ≠ {}"
shows "finite (A ;; B) ⟷ (finite (A × B))"
apply(rule iffI)
apply(rule finite_cartesian_product)
apply(erule A0)
apply(rule assms(2))
apply(erule A1)
apply(rule assms(1))
apply(simp add: Sequ_def)
apply(rule finite_image_set2)
apply(drule finite_cartesian_productD1)
apply(rule assms(2))
apply(simp)
apply(drule finite_cartesian_productD2)
apply(rule assms(1))
apply(simp)
done
lemma Star_non_empty_string_infinite:
assumes "s ∈ A" " s ≠ []"
shows "infinite (A⋆)"
proof -
have "inj (λn. concat (replicate n s))"
using assms(2) concat_replicate_inj
by(auto simp add: inj_on_def)
moreover
have "infinite (UNIV::nat set)" by simp
ultimately
have "infinite ((λn. concat (replicate n s)) ` UNIV)"
by (simp add: range_inj_infinite)
moreover
have "((λn. concat (replicate n s)) ` UNIV) ⊆ (A⋆)"
using Star_concat_replicate assms(1) by auto
ultimately show "infinite (A⋆)"
using infinite_super by auto
qed
lemma infinitestrings_correctness:
shows "infinitestrings r ⟷ infinite (L r)"
apply(induct r)
apply(simp_all)
apply(simp add: zeroable_correctness)
apply(rule iffI)
apply(erule disjE)
apply(subst Sequ_Prod_finite)
apply(auto)[2]
using finite_cartesian_productD2 apply blast
apply(subst Sequ_Prod_finite)
apply(auto)[2]
using finite_cartesian_productD1 apply blast
apply(subgoal_tac "L r1 ≠ {} ∧ L r2 ≠ {}")
prefer 2
apply(auto simp add: Sequ_def)[1]
apply(subst (asm) Sequ_Prod_finite)
apply(auto)[2]
apply(auto)[1]
apply(simp add: atmostempty_correctness)
apply(rule iffI)
apply (metis Star_empty_finite Star_empty_string_finite subset_singletonD)
using Star_non_empty_string_infinite apply blast
done
end