--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys3/GeneralRegexBound.thy Thu Apr 28 15:56:22 2022 +0100
@@ -0,0 +1,212 @@
+theory GeneralRegexBound
+ imports "BasicIdentities"
+begin
+
+lemma size_geq1:
+ shows "rsize r \<ge> 1"
+ by (induct r) auto
+
+definition RSEQ_set where
+ "RSEQ_set A n \<equiv> {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A \<and> rsize r1 + rsize r2 \<le> n}"
+
+definition RSEQ_set_cartesian where
+ "RSEQ_set_cartesian A = {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A}"
+
+definition RALT_set where
+ "RALT_set A n \<equiv> {RALTS rs | rs. set rs \<subseteq> A \<and> rsizes rs \<le> n}"
+
+definition RALTs_set where
+ "RALTs_set A n \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n}"
+
+definition
+ "sizeNregex N \<equiv> {r. rsize r \<le> N}"
+
+
+lemma sizenregex_induct1:
+ "sizeNregex (Suc n) = (({RZERO, RONE} \<union> {RCHAR c| c. True})
+ \<union> (RSTAR ` sizeNregex n)
+ \<union> (RSEQ_set (sizeNregex n) n)
+ \<union> (RALTs_set (sizeNregex n) n))"
+ apply(auto)
+ apply(case_tac x)
+ apply(auto simp add: RSEQ_set_def)
+ using sizeNregex_def apply force
+ using sizeNregex_def apply auto[1]
+ apply (simp add: sizeNregex_def)
+ apply (simp add: sizeNregex_def)
+ apply (simp add: RALTs_set_def)
+ apply (metis imageI list.set_map member_le_sum_list order_trans)
+ apply (simp add: sizeNregex_def)
+ apply (simp add: sizeNregex_def)
+ apply (simp add: sizeNregex_def)
+ using sizeNregex_def apply force
+ apply (simp add: sizeNregex_def)
+ apply (simp add: sizeNregex_def)
+ apply (simp add: RALTs_set_def)
+ apply(simp add: sizeNregex_def)
+ apply(auto)
+ using ex_in_conv by fastforce
+
+lemma s4:
+ "RSEQ_set A n \<subseteq> RSEQ_set_cartesian A"
+ using RSEQ_set_cartesian_def RSEQ_set_def by fastforce
+
+lemma s5:
+ assumes "finite A"
+ shows "finite (RSEQ_set_cartesian A)"
+ using assms
+ apply(subgoal_tac "RSEQ_set_cartesian A = (\<lambda>(x1, x2). RSEQ x1 x2) ` (A \<times> A)")
+ apply simp
+ unfolding RSEQ_set_cartesian_def
+ apply(auto)
+ done
+
+
+definition RALTs_set_length
+ where
+ "RALTs_set_length A n l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n \<and> length rs \<le> l}"
+
+
+definition RALTs_set_length2
+ where
+ "RALTs_set_length2 A l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
+
+definition set_length2
+ where
+ "set_length2 A l \<equiv> {rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
+
+
+lemma r000:
+ shows "RALTs_set_length A n l \<subseteq> RALTs_set_length2 A l"
+ apply(auto simp add: RALTs_set_length2_def RALTs_set_length_def)
+ done
+
+
+lemma r02:
+ shows "set_length2 A 0 \<subseteq> {[]}"
+ apply(auto simp add: set_length2_def)
+ apply(case_tac x)
+ apply(auto)
+ done
+
+lemma r03:
+ shows "set_length2 A (Suc n) \<subseteq>
+ {[]} \<union> (\<lambda>(h, t). h # t) ` (A \<times> (set_length2 A n))"
+ apply(auto simp add: set_length2_def)
+ apply(case_tac x)
+ apply(auto)
+ done
+
+lemma r1:
+ assumes "finite A"
+ shows "finite (set_length2 A n)"
+ using assms
+ apply(induct n)
+ apply(rule finite_subset)
+ apply(rule r02)
+ apply(simp)
+ apply(rule finite_subset)
+ apply(rule r03)
+ apply(simp)
+ done
+
+lemma size_sum_more_than_len:
+ shows "rsizes rs \<ge> length rs"
+ apply(induct rs)
+ apply simp
+ apply simp
+ apply(subgoal_tac "rsize a \<ge> 1")
+ apply linarith
+ using size_geq1 by auto
+
+
+lemma sum_list_len:
+ shows "rsizes rs \<le> n \<Longrightarrow> length rs \<le> n"
+ by (meson order.trans size_sum_more_than_len)
+
+
+lemma t2:
+ shows "RALTs_set A n \<subseteq> RALTs_set_length A n n"
+ unfolding RALTs_set_length_def RALTs_set_def
+ apply(auto)
+ using sum_list_len by blast
+
+lemma s8_aux:
+ assumes "finite A"
+ shows "finite (RALTs_set_length A n n)"
+proof -
+ have "finite A" by fact
+ then have "finite (set_length2 A n)"
+ by (simp add: r1)
+ moreover have "(RALTS ` (set_length2 A n)) = RALTs_set_length2 A n"
+ unfolding RALTs_set_length2_def set_length2_def
+ by (auto)
+ ultimately have "finite (RALTs_set_length2 A n)"
+ by (metis finite_imageI)
+ then show ?thesis
+ by (metis infinite_super r000)
+qed
+
+lemma char_finite:
+ shows "finite {RCHAR c |c. True}"
+ apply simp
+ apply(subgoal_tac "finite (RCHAR ` (UNIV::char set))")
+ prefer 2
+ apply simp
+ by (simp add: full_SetCompr_eq)
+
+
+lemma finite_size_n:
+ shows "finite (sizeNregex n)"
+ apply(induct n)
+ apply(simp add: sizeNregex_def)
+ apply (metis (mono_tags, lifting) not_finite_existsD not_one_le_zero size_geq1)
+ apply(subst sizenregex_induct1)
+ apply(simp only: finite_Un)
+ apply(rule conjI)+
+ apply(simp)
+
+ using char_finite apply blast
+ apply(simp)
+ apply(rule finite_subset)
+ apply(rule s4)
+ apply(rule s5)
+ apply(simp)
+ apply(rule finite_subset)
+ apply(rule t2)
+ apply(rule s8_aux)
+ apply(simp)
+ done
+
+lemma three_easy_cases0:
+ shows "rsize (rders_simp RZERO s) \<le> Suc 0"
+ apply(induct s)
+ apply simp
+ apply simp
+ done
+
+
+lemma three_easy_cases1:
+ shows "rsize (rders_simp RONE s) \<le> Suc 0"
+ apply(induct s)
+ apply simp
+ apply simp
+ using three_easy_cases0 by auto
+
+
+lemma three_easy_casesC:
+ shows "rsize (rders_simp (RCHAR c) s) \<le> Suc 0"
+ apply(induct s)
+ apply simp
+ apply simp
+ apply(case_tac " a = c")
+ using three_easy_cases1 apply blast
+ apply simp
+ using three_easy_cases0 by force
+
+
+unused_thms
+
+
+end
+