--- a/thys/Paper/Paper.thy Mon Feb 08 09:56:32 2016 +0000
+++ b/thys/Paper/Paper.thy Mon Feb 08 11:54:48 2016 +0000
@@ -134,7 +134,7 @@
@{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ &
@{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
@{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
- & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "c" "v\<^sub>1" "v\<^sub>2"]}\\
+ & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
@{thm (lhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$
& @{thm (rhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
@{thm (lhs) injval.simps(8)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$
@@ -260,6 +260,16 @@
text {*
\noindent
+ Things we have proved about our version of the Sulzmann ordering
+
+ \begin{center}
+ \begin{tabular}{c}
+ @{thm[mode=IfThen] ValOrd_refl[of "v" "r"]}\medskip\\
+ @{thm[mode=IfThen] ValOrd_total[of "v\<^sub>1" "r" "v\<^sub>2"]}
+ \end{tabular}
+ \end{center}\bigskip
+
+ \noindent
Things we like to prove, but cannot:\bigskip
If @{term "s \<in> r \<rightarrow> v\<^sub>1"}, @{term "\<turnstile> v\<^sub>2 : r"}, then @{term "v\<^sub>1 \<succ>r v\<^sub>2"}