--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/SpecAlts.thy Sun Oct 10 18:35:21 2021 +0100
@@ -0,0 +1,762 @@
+
+theory SpecAlts
+ imports Main "~~/src/HOL/Library/Sublist"
+begin
+
+section {* Sequential Composition of Languages *}
+
+definition
+ Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
+where
+ "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
+
+text {* Two Simple Properties about Sequential Composition *}
+
+lemma Sequ_empty_string [simp]:
+ shows "A ;; {[]} = A"
+ and "{[]} ;; A = A"
+by (simp_all add: Sequ_def)
+
+lemma Sequ_empty [simp]:
+ shows "A ;; {} = {}"
+ and "{} ;; A = {}"
+by (simp_all add: Sequ_def)
+
+
+section {* Semantic Derivative (Left Quotient) of Languages *}
+
+definition
+ Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Der c A \<equiv> {s. c # s \<in> A}"
+
+definition
+ Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Ders s A \<equiv> {s'. s @ s' \<in> A}"
+
+lemma Der_null [simp]:
+ shows "Der c {} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_empty [simp]:
+ shows "Der c {[]} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_char [simp]:
+ shows "Der c {[d]} = (if c = d then {[]} else {})"
+unfolding Der_def
+by auto
+
+lemma Der_union [simp]:
+ shows "Der c (A \<union> B) = Der c A \<union> Der c B"
+unfolding Der_def
+ by auto
+
+lemma Der_Union [simp]:
+ shows "Der c (\<Union>B. A) = (\<Union>B. Der c A)"
+unfolding Der_def
+by auto
+
+lemma Der_Sequ [simp]:
+ shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Sequ_def
+by (auto simp add: Cons_eq_append_conv)
+
+
+section {* Kleene Star for Languages *}
+
+inductive_set
+ Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+ for A :: "string set"
+where
+ start[intro]: "[] \<in> A\<star>"
+| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
+
+(* Arden's lemma *)
+
+lemma Star_cases:
+ shows "A\<star> = {[]} \<union> A ;; A\<star>"
+unfolding Sequ_def
+by (auto) (metis Star.simps)
+
+lemma Star_decomp:
+ assumes "c # x \<in> A\<star>"
+ shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
+using assms
+by (induct x\<equiv>"c # x" rule: Star.induct)
+ (auto simp add: append_eq_Cons_conv)
+
+lemma Star_Der_Sequ:
+ shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
+unfolding Der_def Sequ_def
+by(auto simp add: Star_decomp)
+
+
+lemma Der_star [simp]:
+ shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
+proof -
+ have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
+ by (simp only: Star_cases[symmetric])
+ also have "... = Der c (A ;; A\<star>)"
+ by (simp only: Der_union Der_empty) (simp)
+ also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
+ by simp
+ also have "... = (Der c A) ;; A\<star>"
+ using Star_Der_Sequ by auto
+ finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
+qed
+
+
+section {* Regular Expressions *}
+
+datatype rexp =
+ ZERO
+| ONE
+| CHAR char
+| SEQ rexp rexp
+| ALTS "rexp list"
+| STAR rexp
+
+section {* Semantics of Regular Expressions *}
+
+fun
+ L :: "rexp \<Rightarrow> string set"
+where
+ "L (ZERO) = {}"
+| "L (ONE) = {[]}"
+| "L (CHAR c) = {[c]}"
+| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
+| "L (ALTS rs) = (\<Union>r \<in> set rs. L r)"
+| "L (STAR r) = (L r)\<star>"
+
+
+section {* Nullable, Derivatives *}
+
+fun
+ nullable :: "rexp \<Rightarrow> bool"
+where
+ "nullable (ZERO) = False"
+| "nullable (ONE) = True"
+| "nullable (CHAR c) = False"
+| "nullable (ALTS rs) = (\<exists>r \<in> set rs. nullable r)"
+| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
+| "nullable (STAR r) = True"
+
+
+fun
+ der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "der c (ZERO) = ZERO"
+| "der c (ONE) = ZERO"
+| "der c (CHAR d) = (if c = d then ONE else ZERO)"
+| "der c (ALTS rs) = ALTS (map (der c) rs)"
+| "der c (SEQ r1 r2) =
+ (if nullable r1
+ then ALTS [SEQ (der c r1) r2, der c r2]
+ else SEQ (der c r1) r2)"
+| "der c (STAR r) = SEQ (der c r) (STAR r)"
+
+fun
+ ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "ders [] r = r"
+| "ders (c # s) r = ders s (der c r)"
+
+
+lemma nullable_correctness:
+ shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
+by (induct r) (auto simp add: Sequ_def)
+
+lemma der_correctness:
+ shows "L (der c r) = Der c (L r)"
+ apply(induct r)
+ apply(simp_all add: nullable_correctness)
+ apply(auto simp add: Der_def)
+ done
+
+lemma ders_correctness:
+ shows "L (ders s r) = Ders s (L r)"
+by (induct s arbitrary: r)
+ (simp_all add: Ders_def der_correctness Der_def)
+
+fun flats :: "rexp list \<Rightarrow> rexp list"
+ where
+ "flats [] = []"
+| "flats (ZERO # rs1) = flats(rs1)"
+| "flats ((ALTS rs1) #rs2) = rs1 @ (flats rs2)"
+| "flats (r1 # rs2) = r1 # flats rs2"
+
+fun simp_SEQ where
+ "simp_SEQ ONE r\<^sub>2 = r\<^sub>2"
+| "simp_SEQ r\<^sub>1 ONE = r\<^sub>1"
+| "simp_SEQ r\<^sub>1 r\<^sub>2 = SEQ r\<^sub>1 r\<^sub>2"
+
+fun
+ simp :: "rexp \<Rightarrow> rexp"
+where
+ "simp (ALTS rs) = ALTS (remdups (flats (map simp rs)))"
+| "simp (SEQ r1 r2) = simp_SEQ (simp r1) (simp r2)"
+| "simp r = r"
+
+lemma simp_SEQ_correctness:
+ shows "L (simp_SEQ r1 r2) = L (SEQ r1 r2)"
+ apply(induct r1 r2 rule: simp_SEQ.induct)
+ apply(simp_all)
+ done
+
+lemma flats_correctness:
+ shows "(\<Union>r \<in> set (flats rs). L r) = L (ALTS rs)"
+ apply(induct rs rule: flats.induct)
+ apply(simp_all)
+ done
+
+
+lemma simp_correctness:
+ shows "L (simp r) = L r"
+ apply(induct r)
+ apply(simp_all)
+ apply(simp add: simp_SEQ_correctness)
+ apply(simp add: flats_correctness)
+ done
+
+fun
+ ders2 :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "ders2 [] r = r"
+| "ders2 (c # s) r = ders2 s (simp (der c r))"
+
+lemma ders2_ZERO:
+ shows "ders2 s ZERO = ZERO"
+ apply(induct s)
+ apply(simp_all)
+ done
+
+lemma ders2_ONE:
+ shows "ders2 s ONE \<in> {ZERO, ONE}"
+ apply(induct s)
+ apply(simp_all)
+ apply(auto)
+ apply(case_tac s)
+ apply(auto)
+ apply(case_tac s)
+ apply(auto)
+ done
+
+lemma ders2_CHAR:
+ shows "ders2 s (CHAR c) \<in> {ZERO, ONE, CHAR c}"
+ apply(induct s)
+ apply(simp_all)
+ apply(auto simp add: ders2_ZERO)
+ apply(case_tac s)
+ apply(auto simp add: ders2_ZERO)
+ using ders2_ONE
+ apply(auto)[1]
+ using ders2_ONE
+ apply(auto)[1]
+ done
+
+lemma remdup_size:
+ shows "size_list f (remdups rs) \<le> size_list f rs"
+ apply(induct rs)
+ apply(simp_all)
+ done
+
+lemma flats_append:
+ shows "flats (rs1 @ rs2) = (flats rs1) @ (flats rs2)"
+ apply(induct rs1 arbitrary: rs2)
+ apply(auto)
+ apply(case_tac a)
+ apply(auto)
+ done
+
+lemma flats_Cons:
+ shows "flats (r # rs) = (flats [r]) @ (flats rs)"
+ apply(subst flats_append[symmetric])
+ apply(simp)
+ done
+
+lemma flats_size:
+ shows "size_list (\<lambda>x. size (ders2 s x)) (flats rs) \<le> size_list (\<lambda>x. size (ders2 s x)) rs"
+ apply(induct rs arbitrary: s rule: flats.induct)
+ apply(simp_all)
+ apply(simp add: ders2_ZERO)
+ apply (simp add: le_SucI)
+
+ apply(subst flats_Cons)
+ apply(simp)
+ apply(case_tac a)
+ apply(auto)
+ apply(simp add: ders2_ZERO)
+ apply (simp add: le_SucI)
+ sorry
+
+lemma ders2_ALTS:
+ shows "size (ders2 s (ALTS rs)) \<le> size (ALTS (map (ders2 s) rs))"
+ apply(induct s arbitrary: rs)
+ apply(simp_all)
+ thm size_list_pointwise
+ apply (simp add: size_list_pointwise)
+ apply(drule_tac x="remdups (flats (map (simp \<circ> der a) rs))" in meta_spec)
+ apply(rule le_trans)
+ apply(assumption)
+ apply(simp)
+ apply(rule le_trans)
+ apply(rule remdup_size)
+ apply(simp add: comp_def)
+ apply(rule le_trans)
+ apply(rule flats_size)
+ by (simp add: size_list_pointwise)
+
+definition
+ "derss2 A r = {ders2 s r | s. s \<in> A}"
+
+lemma
+ "\<forall>rd \<in> derss2 (UNIV) r. size rd \<le> Suc (size r)"
+ apply(induct r)
+ apply(auto simp add: derss2_def ders2_ZERO)[1]
+ apply(auto simp add: derss2_def ders2_ZERO)[1]
+ using ders2_ONE
+ apply(auto)[1]
+ apply (metis rexp.size(7) rexp.size(8) zero_le)
+ using ders2_CHAR
+ apply(auto)[1]
+ apply (smt derss2_def le_SucI le_zero_eq mem_Collect_eq rexp.size(7) rexp.size(8) rexp.size(9))
+ defer
+ apply(auto simp add: derss2_def)
+ apply(rule le_trans)
+ apply(rule ders2_ALTS)
+ apply(simp)
+ apply(simp add: comp_def)
+
+ apply(simp add: size_list_pointwise)
+ apply(case_tac s)
+ apply(simp)
+ apply(simp only:)
+ apply(auto)[1]
+
+ apply(case_tac s)
+ apply(simp)
+ apply(simp)
+
+section {* Values *}
+
+datatype val =
+ Void
+| Char char
+| Seq val val
+| Nth nat val
+| Stars "val list"
+
+
+section {* The string behind a value *}
+
+fun
+ flat :: "val \<Rightarrow> string"
+where
+ "flat (Void) = []"
+| "flat (Char c) = [c]"
+| "flat (Nth n v) = flat v"
+| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
+| "flat (Stars []) = []"
+| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))"
+
+abbreviation
+ "flats vs \<equiv> concat (map flat vs)"
+
+lemma flat_Stars [simp]:
+ "flat (Stars vs) = flats vs"
+by (induct vs) (auto)
+
+lemma Star_concat:
+ assumes "\<forall>s \<in> set ss. s \<in> A"
+ shows "concat ss \<in> A\<star>"
+using assms by (induct ss) (auto)
+
+lemma Star_cstring:
+ assumes "s \<in> A\<star>"
+ shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
+using assms
+apply(induct rule: Star.induct)
+apply(auto)[1]
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(erule exE)
+apply(clarify)
+apply(case_tac "s1 = []")
+apply(rule_tac x="ss" in exI)
+apply(simp)
+apply(rule_tac x="s1#ss" in exI)
+apply(simp)
+done
+
+
+section {* Lexical Values *}
+
+inductive
+ Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
+where
+ "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
+| "\<lbrakk>\<Turnstile> v1 : (nth rs n); n < length rs\<rbrakk> \<Longrightarrow> \<Turnstile> (Nth n v1) : ALTS rs"
+| "\<Turnstile> Void : ONE"
+| "\<Turnstile> Char c : CHAR c"
+| "\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [] \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
+
+inductive_cases Prf_elims:
+ "\<Turnstile> v : ZERO"
+ "\<Turnstile> v : SEQ r1 r2"
+ "\<Turnstile> v : ALTS rs"
+ "\<Turnstile> v : ONE"
+ "\<Turnstile> v : CHAR c"
+ "\<Turnstile> vs : STAR r"
+
+lemma Prf_Stars_appendE:
+ assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
+ shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r"
+using assms
+by (auto intro: Prf.intros elim!: Prf_elims)
+
+
+lemma Star_cval:
+ assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
+ shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
+using assms
+apply(induct ss)
+apply(auto)
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(case_tac "flat v = []")
+apply(rule_tac x="vs" in exI)
+apply(simp)
+apply(rule_tac x="v#vs" in exI)
+apply(simp)
+done
+
+
+lemma L_flat_Prf1:
+ assumes "\<Turnstile> v : r"
+ shows "flat v \<in> L r"
+using assms
+ apply(induct)
+ apply(auto simp add: Sequ_def Star_concat)
+ done
+
+lemma L_flat_Prf2:
+ assumes "s \<in> L r"
+ shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
+using assms
+proof(induct r arbitrary: s)
+ case (STAR r s)
+ have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
+ have "s \<in> L (STAR r)" by fact
+ then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
+ using Star_cstring by auto
+ then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
+ using IH Star_cval by metis
+ then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
+ using Prf.intros(5) flat_Stars by blast
+next
+ case (SEQ r1 r2 s)
+ then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
+ unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
+next
+ case (ALTS rs s)
+ then show "\<exists>v. \<Turnstile> v : ALTS rs \<and> flat v = s"
+ unfolding L.simps
+ apply(auto)
+ apply(case_tac rs)
+ apply(simp)
+ apply(simp)
+ apply(auto)
+ apply(drule_tac x="a" in meta_spec)
+ apply(simp)
+ apply(drule_tac x="s" in meta_spec)
+ apply(simp)
+ apply(erule exE)
+ apply(rule_tac x="Nth 0 v" in exI)
+ apply(simp)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ apply(drule_tac x="x" in meta_spec)
+ apply(simp)
+ apply(drule_tac x="s" in meta_spec)
+ apply(simp)
+ apply(erule exE)
+ apply(subgoal_tac "\<exists>n. nth list n = x \<and> n < length list")
+ apply(erule exE)
+ apply(rule_tac x="Nth (Suc n) v" in exI)
+ apply(simp)
+ apply(rule Prf.intros)
+ apply(simp)
+ apply(simp)
+ by (meson in_set_conv_nth)
+qed (auto intro: Prf.intros)
+
+
+lemma L_flat_Prf:
+ shows "L(r) = {flat v | v. \<Turnstile> v : r}"
+using L_flat_Prf1 L_flat_Prf2 by blast
+
+
+
+section {* Sets of Lexical Values *}
+
+text {*
+ Shows that lexical values are finite for a given regex and string.
+*}
+
+definition
+ LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
+where "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
+
+lemma LV_simps:
+ shows "LV ZERO s = {}"
+ and "LV ONE s = (if s = [] then {Void} else {})"
+ and "LV (CHAR c) s = (if s = [c] then {Char c} else {})"
+unfolding LV_def
+by (auto intro: Prf.intros elim: Prf.cases)
+
+
+abbreviation
+ "Prefixes s \<equiv> {s'. prefix s' s}"
+
+abbreviation
+ "Suffixes s \<equiv> {s'. suffix s' s}"
+
+abbreviation
+ "SSuffixes s \<equiv> {s'. strict_suffix s' s}"
+
+lemma Suffixes_cons [simp]:
+ shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
+by (auto simp add: suffix_def Cons_eq_append_conv)
+
+
+lemma finite_Suffixes:
+ shows "finite (Suffixes s)"
+by (induct s) (simp_all)
+
+lemma finite_SSuffixes:
+ shows "finite (SSuffixes s)"
+proof -
+ have "SSuffixes s \<subseteq> Suffixes s"
+ unfolding strict_suffix_def suffix_def by auto
+ then show "finite (SSuffixes s)"
+ using finite_Suffixes finite_subset by blast
+qed
+
+lemma finite_Prefixes:
+ shows "finite (Prefixes s)"
+proof -
+ have "finite (Suffixes (rev s))"
+ by (rule finite_Suffixes)
+ then have "finite (rev ` Suffixes (rev s))" by simp
+ moreover
+ have "rev ` (Suffixes (rev s)) = Prefixes s"
+ unfolding suffix_def prefix_def image_def
+ by (auto)(metis rev_append rev_rev_ident)+
+ ultimately show "finite (Prefixes s)" by simp
+qed
+
+lemma LV_STAR_finite:
+ assumes "\<forall>s. finite (LV r s)"
+ shows "finite (LV (STAR r) s)"
+proof(induct s rule: length_induct)
+ fix s::"char list"
+ assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
+ then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
+ by (force simp add: strict_suffix_def suffix_def)
+ define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
+ define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
+ define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. Stars -` (LV (STAR r) s2)"
+ have "finite S1" using assms
+ unfolding S1_def by (simp_all add: finite_Prefixes)
+ moreover
+ with IH have "finite S2" unfolding S2_def
+ by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
+ ultimately
+ have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
+ moreover
+ have "LV (STAR r) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)"
+ unfolding S1_def S2_def f_def
+ unfolding LV_def image_def prefix_def strict_suffix_def
+ apply(auto)
+ apply(case_tac x)
+ apply(auto elim: Prf_elims)
+ apply(erule Prf_elims)
+ apply(auto)
+ apply(case_tac vs)
+ apply(auto intro: Prf.intros)
+ apply(rule exI)
+ apply(rule conjI)
+ apply(rule_tac x="flat a" in exI)
+ apply(rule conjI)
+ apply(rule_tac x="flats list" in exI)
+ apply(simp)
+ apply(blast)
+ apply(simp add: suffix_def)
+ using Prf.intros(5) by blast
+ ultimately
+ show "finite (LV (STAR r) s)" by (simp add: finite_subset)
+qed
+
+
+lemma LV_finite:
+ shows "finite (LV r s)"
+proof(induct r arbitrary: s)
+ case (ZERO s)
+ show "finite (LV ZERO s)" by (simp add: LV_simps)
+next
+ case (ONE s)
+ show "finite (LV ONE s)" by (simp add: LV_simps)
+next
+ case (CHAR c s)
+ show "finite (LV (CHAR c) s)" by (simp add: LV_simps)
+next
+ case (ALTS rs s)
+ then show "finite (LV (ALTS rs) s)"
+ sorry
+next
+ case (SEQ r1 r2 s)
+ define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
+ define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
+ define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
+ have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
+ then have "finite S1" "finite S2" unfolding S1_def S2_def
+ by (simp_all add: finite_Prefixes finite_Suffixes)
+ moreover
+ have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
+ unfolding f_def S1_def S2_def
+ unfolding LV_def image_def prefix_def suffix_def
+ apply (auto elim!: Prf_elims)
+ by (metis (mono_tags, lifting) mem_Collect_eq)
+ ultimately
+ show "finite (LV (SEQ r1 r2) s)"
+ by (simp add: finite_subset)
+next
+ case (STAR r s)
+ then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
+qed
+
+
+(*
+section {* Our POSIX Definition *}
+
+inductive
+ Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
+where
+ Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
+| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
+| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
+| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
+| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow>
+ (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
+| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
+ \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
+ \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
+| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
+
+inductive_cases Posix_elims:
+ "s \<in> ZERO \<rightarrow> v"
+ "s \<in> ONE \<rightarrow> v"
+ "s \<in> CHAR c \<rightarrow> v"
+ "s \<in> ALT r1 r2 \<rightarrow> v"
+ "s \<in> SEQ r1 r2 \<rightarrow> v"
+ "s \<in> STAR r \<rightarrow> v"
+
+lemma Posix1:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "s \<in> L r" "flat v = s"
+using assms
+by (induct s r v rule: Posix.induct)
+ (auto simp add: Sequ_def)
+
+text {*
+ Our Posix definition determines a unique value.
+*}
+
+lemma Posix_determ:
+ assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
+ shows "v1 = v2"
+using assms
+proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
+ case (Posix_ONE v2)
+ have "[] \<in> ONE \<rightarrow> v2" by fact
+ then show "Void = v2" by cases auto
+next
+ case (Posix_CHAR c v2)
+ have "[c] \<in> CHAR c \<rightarrow> v2" by fact
+ then show "Char c = v2" by cases auto
+next
+ case (Posix_ALT1 s r1 v r2 v2)
+ have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+ moreover
+ have "s \<in> r1 \<rightarrow> v" by fact
+ then have "s \<in> L r1" by (simp add: Posix1)
+ ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto
+ moreover
+ have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+ ultimately have "v = v'" by simp
+ then show "Left v = v2" using eq by simp
+next
+ case (Posix_ALT2 s r2 v r1 v2)
+ have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+ moreover
+ have "s \<notin> L r1" by fact
+ ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'"
+ by cases (auto simp add: Posix1)
+ moreover
+ have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+ ultimately have "v = v'" by simp
+ then show "Right v = v2" using eq by simp
+next
+ case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
+ have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'"
+ "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
+ then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) by fastforce+
+ moreover
+ have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
+ "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
+ ultimately show "Seq v1 v2 = v'" by simp
+next
+ case (Posix_STAR1 s1 r v s2 vs v2)
+ have "(s1 @ s2) \<in> STAR r \<rightarrow> v2"
+ "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
+ then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
+ apply(cases) apply (auto simp add: append_eq_append_conv2)
+ using Posix1(1) apply fastforce
+ apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
+ using Posix1(2) by blast
+ moreover
+ have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+ "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+ ultimately show "Stars (v # vs) = v2" by auto
+next
+ case (Posix_STAR2 r v2)
+ have "[] \<in> STAR r \<rightarrow> v2" by fact
+ then show "Stars [] = v2" by cases (auto simp add: Posix1)
+qed
+
+
+text {*
+ Our POSIX value is a lexical value.
+*}
+
+lemma Posix_LV:
+ assumes "s \<in> r \<rightarrow> v"
+ shows "v \<in> LV r s"
+using assms unfolding LV_def
+apply(induct rule: Posix.induct)
+apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)
+done
+*)
+
+
+end
\ No newline at end of file