thys2/LexerExt.thy
changeset 365 ec5e4fe4cc70
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys2/LexerExt.thy	Sun Oct 10 18:35:21 2021 +0100
@@ -0,0 +1,649 @@
+   
+theory LexerExt
+  imports SpecExt 
+begin
+
+
+section {* The Lexer Functions by Sulzmann and Lu  *}
+
+fun 
+  mkeps :: "rexp \<Rightarrow> val"
+where
+  "mkeps(ONE) = Void"
+| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
+| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
+| "mkeps(STAR r) = Stars []"
+| "mkeps(UPNTIMES r n) = Stars []"
+| "mkeps(NTIMES r n) = Stars (replicate n (mkeps r))"
+| "mkeps(FROMNTIMES r n) = Stars (replicate n (mkeps r))"
+| "mkeps(NMTIMES r n m) = Stars (replicate n (mkeps r))"
+  
+fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
+where
+  "injval (CHAR d) c Void = Char d"
+| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
+| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
+| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
+| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+| "injval (NTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+| "injval (FROMNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+| "injval (UPNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+| "injval (NMTIMES r n m) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+  
+fun 
+  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
+where
+  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
+| "lexer r (c#s) = (case (lexer (der c r) s) of  
+                    None \<Rightarrow> None
+                  | Some(v) \<Rightarrow> Some(injval r c v))"
+
+
+
+section {* Mkeps, Injval Properties *}
+
+lemma mkeps_flat:
+  assumes "nullable(r)" 
+  shows "flat (mkeps r) = []"
+using assms
+  apply(induct rule: nullable.induct) 
+         apply(auto)
+  by presburger  
+  
+  
+lemma mkeps_nullable:
+  assumes "nullable(r)" 
+  shows "\<Turnstile> mkeps r : r"
+using assms
+apply(induct rule: nullable.induct) 
+         apply(auto intro: Prf.intros split: if_splits)
+  using Prf.intros(8) apply force
+     apply(subst append.simps(1)[symmetric])
+     apply(rule Prf.intros)
+       apply(simp)
+      apply(simp)
+       apply (simp add: mkeps_flat)
+      apply(simp)
+  using Prf.intros(9) apply force
+    apply(subst append.simps(1)[symmetric])
+     apply(rule Prf.intros)
+       apply(simp)
+      apply(simp)
+       apply (simp add: mkeps_flat)
+    apply(simp)
+  using Prf.intros(11) apply force
+    apply(subst append.simps(1)[symmetric])
+     apply(rule Prf.intros)
+       apply(simp)
+      apply(simp)
+    apply (simp add: mkeps_flat)
+   apply(simp)
+  apply(simp)
+done
+    
+
+lemma Prf_injval_flat:
+  assumes "\<Turnstile> v : der c r" 
+  shows "flat (injval r c v) = c # (flat v)"
+using assms
+apply(induct arbitrary: v rule: der.induct)
+apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits)
+done
+
+lemma Prf_injval:
+  assumes "\<Turnstile> v : der c r" 
+  shows "\<Turnstile> (injval r c v) : r"
+using assms
+apply(induct r arbitrary: c v rule: rexp.induct)
+apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)[6]
+    apply(simp add: Prf_injval_flat)
+   apply(simp)
+  apply(case_tac x2)
+    apply(simp)
+  apply(erule Prf_elims)
+   apply(simp)
+   apply(erule Prf_elims)
+   apply(simp)
+  apply(erule Prf_elims)
+   apply(simp)
+  using Prf.intros(7) Prf_injval_flat apply auto[1]
+    apply(simp)
+    apply(case_tac x2)
+     apply(simp)
+    apply(erule Prf_elims)
+    apply(simp)
+    apply(erule Prf_elims)
+   apply(simp)
+  apply(erule Prf_elims)
+   apply(simp)
+    apply(subst append.simps(2)[symmetric])
+    apply(rule Prf.intros)
+      apply(simp add: Prf_injval_flat)
+     apply(simp)
+    apply(simp)
+    prefer 2
+   apply(simp)
+   apply(case_tac "x3a < x2")
+    apply(simp)
+    apply(erule Prf_elims)
+   apply(simp)
+    apply(case_tac x2)
+    apply(simp)
+    apply(case_tac x3a)
+     apply(simp)
+    apply(erule Prf_elims)
+    apply(simp)
+    apply(erule Prf_elims)
+    apply(simp)
+    apply(erule Prf_elims)
+    apply(simp)
+  using Prf.intros(12) Prf_injval_flat apply auto[1]
+   apply(simp)
+    apply(erule Prf_elims)
+   apply(simp)
+    apply(erule Prf_elims)
+    apply(simp)
+    apply(subst append.simps(2)[symmetric])
+    apply(rule Prf.intros)
+     apply(simp add: Prf_injval_flat)
+     apply(simp)
+     apply(simp)
+    apply(simp)
+   apply(simp)
+  using Prf.intros(12) Prf_injval_flat apply auto[1]
+    apply(case_tac x2)
+   apply(simp)
+    apply(erule Prf_elims)
+   apply(simp)
+    apply(erule Prf_elims)
+    apply(simp_all)
+    apply (simp add: Prf.intros(10) Prf_injval_flat)
+  using Prf.intros(10) Prf_injval_flat apply auto[1]
+  apply(erule Prf_elims)
+  apply(simp)
+    apply(erule Prf_elims)
+    apply(simp_all)
+    apply(subst append.simps(2)[symmetric])
+    apply(rule Prf.intros)
+     apply(simp add: Prf_injval_flat)
+     apply(simp)
+   apply(simp)
+done
+
+
+
+text {*
+  Mkeps and injval produce, or preserve, Posix values.
+*}
+
+lemma Posix_mkeps:
+  assumes "nullable r"
+  shows "[] \<in> r \<rightarrow> mkeps r"
+using assms
+apply(induct r rule: nullable.induct)
+apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
+apply(subst append.simps(1)[symmetric])
+apply(rule Posix.intros)
+      apply(auto)
+  done
+    
+
+lemma Posix_injval:
+  assumes "s \<in> (der c r) \<rightarrow> v" 
+  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
+using assms
+proof(induct r arbitrary: s v rule: rexp.induct)
+  case ZERO
+  have "s \<in> der c ZERO \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
+next
+  case ONE
+  have "s \<in> der c ONE \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
+next 
+  case (CHAR d)
+  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
+  then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
+  proof (cases)
+    case eq
+    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+    then have "s \<in> ONE \<rightarrow> v" using eq by simp
+    then have eqs: "s = [] \<and> v = Void" by cases simp
+    show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
+    by (auto intro: Posix.intros)
+  next
+    case ineq
+    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
+    then have "False" by cases
+    then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
+  qed
+next
+  case (ALT r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
+  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
+  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
+              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
+              by cases auto
+  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
+  proof (cases)
+    case left
+    have "s \<in> der c r1 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
+    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
+  next 
+    case right
+    have "s \<notin> L (der c r1)" by fact
+    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
+    moreover 
+    have "s \<in> der c r2 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
+    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
+      by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
+  qed
+next
+  case (SEQ r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
+  then consider 
+        (left_nullable) v1 v2 s1 s2 where 
+        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+      | (right_nullable) v1 s1 s2 where 
+        "v = Right v1" "s = s1 @ s2"  
+        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
+      | (not_nullable) v1 v2 s1 s2 where
+        "v = Seq v1 v2" "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
+  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
+    proof (cases)
+      case left_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
+    next
+      case right_nullable
+      have "nullable r1" by fact
+      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
+      moreover
+      have "s \<in> der c r2 \<rightarrow> v1" by fact
+      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
+      moreover
+      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
+        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
+      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
+      by(rule Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
+    next
+      case not_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
+        by (rule_tac Posix.intros) (simp_all) 
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
+    qed
+next
+case (UPNTIMES r n s v)
+  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (UPNTIMES r n) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (UPNTIMES r (n - 1)) \<rightarrow> (Stars vs)" "0 < n"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))" 
+    (* here *)
+    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
+    apply(erule Posix_elims)
+    apply(simp)
+    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+    apply(clarify)
+    apply(drule_tac x="v1" in meta_spec)
+    apply(drule_tac x="vss" in meta_spec)
+    apply(drule_tac x="s1" in meta_spec)
+    apply(drule_tac x="s2" in meta_spec)
+     apply(simp add: der_correctness Der_def)
+    apply(erule Posix_elims)
+     apply(auto)
+      done
+    then show "(c # s) \<in> (UPNTIMES r n) \<rightarrow> injval (UPNTIMES r n) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> (UPNTIMES r (n - 1)) \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> UPNTIMES r n \<rightarrow> Stars (injval r c v1 # vs)" 
+           thm Posix.intros
+           apply (rule_tac Posix.intros)
+               apply(simp_all)
+              apply(case_tac n)
+            apply(simp)
+           using Posix_elims(1) UPNTIMES.prems apply auto[1]
+             apply(simp)
+             done
+        then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" using cons by(simp)
+      qed
+    next
+      case (STAR r)
+  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
+        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
+        apply(rotate_tac 3)
+        apply(erule_tac Posix_elims(6))
+        apply (simp add: Posix.intros(6))
+        using Posix.intros(7) by blast
+    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
+        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
+    qed
+  next
+    case (NTIMES r n s v)
+     have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (NTIMES r n) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> (Stars vs)" "0 < n"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))" 
+    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
+    apply(erule Posix_elims)
+    apply(simp)
+    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+    apply(clarify)
+    apply(drule_tac x="v1" in meta_spec)
+    apply(drule_tac x="vss" in meta_spec)
+    apply(drule_tac x="s1" in meta_spec)
+    apply(drule_tac x="s2" in meta_spec)
+     apply(simp add: der_correctness Der_def)
+    apply(erule Posix_elims)
+     apply(auto)
+      done
+    then show "(c # s) \<in> (NTIMES r n) \<rightarrow> injval (NTIMES r n) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> NTIMES r n \<rightarrow> Stars (injval r c v1 # vs)" 
+           apply (rule_tac Posix.intros)
+               apply(simp_all)
+              apply(case_tac n)
+            apply(simp)
+           using Posix_elims(1) NTIMES.prems apply auto[1]
+             apply(simp)
+             done
+        then show "(c # s) \<in> NTIMES r n \<rightarrow> injval (NTIMES r n) c v" using cons by(simp)
+      qed  
+  next
+    case (FROMNTIMES r n s v)
+  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (FROMNTIMES r n) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (FROMNTIMES r (n - 1)) \<rightarrow> (Stars vs)" "0 < n"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))"
+     | (null) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2"  "s2 \<in> (STAR r) \<rightarrow> (Stars vs)" 
+        "s1 \<in> der c r \<rightarrow> v1" "n = 0"
+         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"  
+    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
+    prefer 2
+    apply(erule Posix_elims)
+    apply(simp)
+    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+    apply(clarify)
+    apply(drule_tac x="v1" in meta_spec)
+    apply(drule_tac x="vss" in meta_spec)
+    apply(drule_tac x="s1" in meta_spec)
+    apply(drule_tac x="s2" in meta_spec)
+     apply(simp add: der_correctness Der_def)
+      apply(rotate_tac 5)
+    apply(erule Posix_elims)
+      apply(auto)[2]
+    apply(erule Posix_elims)
+      apply(simp)
+     apply blast
+    apply(erule Posix_elims)
+    apply(auto)
+      apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)      
+    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+     apply(clarify)
+    apply simp
+      apply(rotate_tac 6)
+    apply(erule Posix_elims)
+      apply(auto)[2]
+    done
+    then show "(c # s) \<in> (FROMNTIMES r n) \<rightarrow> injval (FROMNTIMES r n) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> (FROMNTIMES r (n - 1)) \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> FROMNTIMES r n \<rightarrow> Stars (injval r c v1 # vs)" 
+           apply (rule_tac Posix.intros)
+               apply(simp_all)
+              apply(case_tac n)
+            apply(simp)
+          using Posix_elims(1) FROMNTIMES.prems apply auto[1]
+          using cons(5) apply blast
+             apply(simp)
+             done
+        then show "(c # s) \<in> FROMNTIMES r n \<rightarrow> injval (FROMNTIMES r n) c v" using cons by(simp)
+      next 
+       case null
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+          moreover 
+            have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
+          moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+          moreover
+             moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> FROMNTIMES r 0 \<rightarrow> Stars (injval r c v1 # vs)" 
+           apply (rule_tac Posix.intros) back
+             apply(simp_all)
+           done
+        then show "(c # s) \<in> FROMNTIMES r n \<rightarrow> injval (FROMNTIMES r n) c v" using null 
+          apply(simp)
+          done  
+      qed  
+  next
+    case (NMTIMES r n m s v)
+      have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (NMTIMES r n m) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> (Stars vs)" "0 < n" "n \<le> m"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))"
+     | (null) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2"  "s2 \<in> (UPNTIMES r (m - 1)) \<rightarrow> (Stars vs)" 
+        "s1 \<in> der c r \<rightarrow> v1" "n = 0" "0 < m"
+         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))"  
+    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
+    prefer 2
+    apply(erule Posix_elims)
+    apply(simp)
+    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+    apply(clarify)
+    apply(drule_tac x="v1" in meta_spec)
+    apply(drule_tac x="vss" in meta_spec)
+    apply(drule_tac x="s1" in meta_spec)
+    apply(drule_tac x="s2" in meta_spec)
+     apply(simp add: der_correctness Der_def)
+      apply(rotate_tac 5)
+    apply(erule Posix_elims)
+      apply(auto)[2]
+    apply(erule Posix_elims)
+      apply(simp)
+     apply blast
+      
+    apply(erule Posix_elims)
+    apply(auto)
+      apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)      
+    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+     apply(clarify)
+    apply simp
+      apply(rotate_tac 6)
+    apply(erule Posix_elims)
+      apply(auto)[2]
+    done
+    then show "(c # s) \<in> (NMTIMES r n m) \<rightarrow> injval (NMTIMES r n m) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> NMTIMES r n m \<rightarrow> Stars (injval r c v1 # vs)" 
+           apply (rule_tac Posix.intros)
+               apply(simp_all)
+              apply(case_tac n)
+            apply(simp)
+          using Posix_elims(1) NMTIMES.prems apply auto[1]
+          using cons(5) apply blast
+           apply(simp)
+            apply(rule cons)
+             done
+        then show "(c # s) \<in> NMTIMES r n m \<rightarrow> injval (NMTIMES r n m) c v" using cons by(simp)
+      next 
+       case null
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+          moreover 
+            have "s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs" by fact
+          moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+          moreover
+             moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> NMTIMES r 0 m \<rightarrow> Stars (injval r c v1 # vs)" 
+           apply (rule_tac Posix.intros) back
+              apply(simp_all)
+              apply(rule null)
+           done
+        then show "(c # s) \<in> NMTIMES r n m \<rightarrow> injval (NMTIMES r n m) c v" using null 
+          apply(simp)
+          done  
+      qed    
+qed
+
+section {* Lexer Correctness *}
+
+lemma lexer_correct_None:
+  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
+apply(induct s arbitrary: r)
+apply(simp add: nullable_correctness)
+apply(drule_tac x="der a r" in meta_spec)
+apply(auto simp add: der_correctness Der_def)
+done
+
+lemma lexer_correct_Some:
+  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
+apply(induct s arbitrary: r)
+apply(auto simp add: Posix_mkeps nullable_correctness)[1]
+apply(drule_tac x="der a r" in meta_spec)
+apply(simp add: der_correctness Der_def)
+apply(rule iffI)
+apply(auto intro: Posix_injval simp add: Posix1(1))
+done 
+
+lemma lexer_correctness:
+  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
+  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
+using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
+using Posix1(1) lexer_correct_None lexer_correct_Some by blast
+
+end
\ No newline at end of file