--- a/thys/Journal/Paper.thy Thu Feb 25 22:46:58 2021 +0000
+++ b/thys/Journal/Paper.thy Sun Oct 10 00:56:47 2021 +0100
@@ -5,7 +5,7 @@
"../Simplifying"
"../Positions"
"../Sulzmann"
- "~~/src/HOL/Library/LaTeXsugar"
+ "HOL-Library.LaTeXsugar"
begin
lemma Suc_0_fold:
@@ -50,7 +50,7 @@
ZERO ("\<^bold>0" 81) and
ONE ("\<^bold>1" 81) and
- CHAR ("_" [1000] 80) and
+ CH ("_" [1000] 80) and
ALT ("_ + _" [77,77] 78) and
SEQ ("_ \<cdot> _" [77,77] 78) and
STAR ("_\<^sup>\<star>" [79] 78) and
@@ -333,7 +333,7 @@
\<open>r :=\<close>
@{const "ZERO"} $\mid$
@{const "ONE"} $\mid$
- @{term "CHAR c"} $\mid$
+ @{term "CH c"} $\mid$
@{term "ALT r\<^sub>1 r\<^sub>2"} $\mid$
@{term "SEQ r\<^sub>1 r\<^sub>2"} $\mid$
@{term "STAR r"}
@@ -1411,7 +1411,7 @@
\begin{tabular}{lcl}
@{term areg} & $::=$ & @{term "AZERO"}\\
& $\mid$ & @{term "AONE bs"}\\
- & $\mid$ & @{term "ACHAR bs c"}\\
+ & $\mid$ & @{term "ACH bs c"}\\
& $\mid$ & @{term "AALT bs r\<^sub>1 r\<^sub>2"}\\
& $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
& $\mid$ & @{term "ASTAR bs r"}
@@ -1693,7 +1693,7 @@
By induction on the definition of @{term "erase r"}. The cases for rule 1) and 2) are
straightforward as @{term "der c ZERO"} and @{term "der c ONE"} are both equal to
@{term ZERO}. This means @{term "\<Turnstile> v : ZERO"} cannot hold. Similarly in case of rule 3)
- where @{term r} is of the form @{term "ACHAR d"} with @{term "c = d"}. Then by assumption
+ where @{term r} is of the form @{term "ACH d"} with @{term "c = d"}. Then by assumption
we know @{term "\<Turnstile> v : ONE"}, which implies @{term "v = Void"}. The equation follows by
simplification of left- and right-hand side. In case @{term "c \<noteq> d"} we have again
@{term "\<Turnstile> v : ZERO"}, which cannot hold.