ChengsongTanPhdThesis/Chapters/Finite.tex
changeset 555 aecf1ddf3541
parent 554 15d182ffbc76
child 556 c27f04bb2262
--- a/ChengsongTanPhdThesis/Chapters/Finite.tex	Sun Jun 26 22:22:47 2022 +0100
+++ b/ChengsongTanPhdThesis/Chapters/Finite.tex	Tue Jun 28 21:07:42 2022 +0100
@@ -276,7 +276,7 @@
 remove duplicates in an \emph{r}$\textit{rexp}$ list, 
 according to the accumulator
 and leave only one of each different element in a list:
-\begin{lemma}
+\begin{lemma}\label{rdistinctDoesTheJob}
 	The function $\textit{rdistinct}$ satisfies the following
 	properties:
 	\begin{itemize}
@@ -284,12 +284,19 @@
 			If $a \in acc$ then $a \notin (\rdistinct{rs}{acc})$.
 		\item
 			If list $rs'$ is the result of $\rdistinct{rs}{acc}$,
-			All the elements in $rs'$ are unique.
+			then $\textit{isDistinct} \; rs'$.
+		\item
+			$\rdistinct{rs}{acc} = rs - acc$
 	\end{itemize}
 \end{lemma}
+\noindent
+The predicate $\textit{isDistinct}$ is for testing
+whether a list's elements are all unique. It is defined
+recursively on the structure of a regular expression,
+and we omit the precise definition here.
 \begin{proof}
 	The first part is by an induction on $rs$.
-	The second part can be proven by using the 
+	The second and third part can be proven by using the 
 	induction rules of $\rdistinct{\_}{\_}$.
 	
 \end{proof}
@@ -338,17 +345,14 @@
 when $\rdistinct{\_}{\_}$ becomes an identical mapping
 for any prefix of an input list, in other words, when can 
 we ``push out" the arguments of $\rdistinct{\_}{\_}$:
-\begin{lemma}
+\begin{lemma}\label{distinctRdistinctAppend}
 	If $\textit{isDistinct} \; rs_1$, and $rs_1 \cap acc = \varnothing$,
-	then it can be taken out and left untouched in the output:
+	then 
 	\[\textit{rdistinct}\;  (rs_1 @ rsa)\;\, acc
 	= rs_1@(\textit{rdistinct} rsa \; (acc \cup rs_1))\]
 \end{lemma}
 \noindent
-The predicate $\textit{isDistinct}$ is for testing
-whether a list's elements are all unique. It is defined
-recursively on the structure of a regular expression,
-and we omit the precise definition here.
+In other words, it can be taken out and left untouched in the output.
 \begin{proof}
 By an induction on $rs_1$, where $rsa$ and $acc$ are allowed to be arbitrary.
 \end{proof}
@@ -359,12 +363,12 @@
 	The two properties hold if $r \in rs$:
 	\begin{itemize}
 		\item
-			$\rdistinct{rs}{rset} = \rdistinct{(rs @ [r])}{rset}$
-			and 
+			$\rdistinct{rs}{rset} = \rdistinct{(rs @ [r])}{rset}$\\
+			and\\
 			$\rdistinct{(ab :: rs @ [ab])}{rset'} = \rdistinct{(ab :: rs)}{rset'}$
 		\item
-			$\rdistinct{ (rs @ rs') }{rset} = \rdistinct{rs @ [r] @ rs'}{rset}$
-			and
+			$\rdistinct{ (rs @ rs') }{rset} = \rdistinct{rs @ [r] @ rs'}{rset}$\\
+			and\\
 			$\rdistinct{(ab :: rs @ [ab] @ rs'')}{rset'} = 
 			 \rdistinct{(ab :: rs @ rs'')}{rset'}$
 	\end{itemize}
@@ -377,6 +381,33 @@
 so that the induction goes through.
 \end{proof}
 
+\noindent
+This allows us to prove ``Idempotency" of $\rdistinct{}{}$ of some kind:
+\begin{lemma}\label{rdistinctConcatGeneral}
+	The following equalities involving multiple applications  of $\rdistinct{}{}$ hold:
+	\begin{itemize}
+		\item
+			$\rdistinct{(rs @ rs')}{\varnothing} = \rdistinct{((\rdistinct{rs}{\varnothing})@ rs')}{\varnothing}$
+		\item
+			$\rdistinct{(rs @ rs')}{\varnothing} = \rdistinct{(\rdistinct{rs}{\varnothing} @ rs')}{\varnothing}$
+		\item
+			If $rset' \subseteq rset$, then $\rdistinct{rs}{rset} = 
+			\rdistinct{(\rdistinct{rs}{rset'})}{rset}$. As a corollary
+			of this,
+		\item
+			$\rdistinct{(rs @ rs')}{rset} = \rdistinct{
+			(\rdistinct{rs}{\varnothing}) @ rs')}{rset}$. This
+			gives another corollary use later:
+		\item
+			If $a \in rset$, then $\rdistinct{(rs @ rs')}{rset} = \rdistinct{
+			(\rdistinct{(a :: rs)}{\varnothing} @ rs')}{rset} $,
+
+	\end{itemize}
+\end{lemma}
+\begin{proof}
+	By \ref{rdistinctDoesTheJob} and \ref{distinctRemovesMiddle}.
+\end{proof}
+
 \subsubsection{The Properties of $\backslash_r$, $\backslash_{rsimp}$, $\textit{Rflts}$ and $\textit{Rsimp}_{ALTS}$} 
 We give in this subsection some properties of how $\backslash_r$, $\backslash_{rsimp}$, $\textit{Rflts}$ and $\textit{Rsimp}_{ALTS} $ interact with each other and with $@$, the concatenation operator.
 These will be helpful in later closed form proofs, when
@@ -403,13 +434,20 @@
 		\item
 			If $r \neq \RZERO$ and $\nexists rs'. r = \RALTS{rs'}$ then $\rflts \; (rs @ [r])
 			= (\rflts \; rs) @ [r]$
+		\item
+			If $r = \RALTS{rs}$ and $r \in rs'$ then for all $r_1 \in rs. 
+			r_1 \in \rflts \; rs'$.
+		\item
+			$\rflts \; (rs_a @ \RZERO :: rs_b) = \rflts \; (rs_a @ rs_b)$
 	\end{itemize}
 \end{lemma}
 \noindent
 \begin{proof}
-	By induction on $rs_1$ in the first part, and induction on $r$ in the second part,
-	and induction on $rs$, $rs'$ in the third and fourth sub-lemma.
+	By induction on $rs_1$ in the first sub-lemma, and induction on $r$ in the second part,
+	and induction on $rs$, $rs'$, $rs$, $rs'$, $rs_a$ in the third, fourth, fifth, sixth and 
+	last sub-lemma.
 \end{proof}
+
 \subsubsection{The $RL$ Function: Language Interpretation of $\textit{Rrexp}$s}
 Much like the definition of $L$ on plain regular expressions, one could also 
 define the language interpretation of $\rrexp$s.
@@ -594,7 +632,30 @@
 	The lemma \ref{goodaltsNonalt} is used in the alternative
 	case where 2 or more elements are present in the list.
 \end{proof}
+\noindent
+Given below is a property involving $\rflts$, $\rdistinct{}{}$, $\rsimp{}$ and $\rsimp_{ALTS}$,
+which requires $\ref{good1}$ to go through smoothly.
+It says that an application of $\rsimp_{ALTS}$ can be "absorbed",
+if it its output is concatenated with a list and then applied to $\rflts$.
+\begin{lemma}\label{flattenRsimpalts}
+	$\rflts \; ( (\rsimp_{ALTS} \; 
+	(\rdistinct{(\rflts \; (\map \; \rsimp{}\; rs))}{\varnothing})) :: 
+	\map \; \rsimp{} \; rs' ) = 
+	\rflts \; ( (\rdistinct{(\rflts \; (\map \; \rsimp{}\; rs))}{\varnothing}) @ (
+	\map \; \rsimp{rs'}))$
 
+	
+\end{lemma}
+\begin{proof}
+	By \ref{good1}.
+\end{proof}
+\noindent
+
+
+
+
+
+We are also 
 \subsubsection{$\rsimp$ is Idempotent}
 The idempotency of $\rsimp$ is very useful in 
 manipulating regular expression terms into desired
@@ -617,7 +678,14 @@
 on regular expressions as many times as we want, if we have at least
 one simplification applied to it, and apply it wherever we would like to:
 \begin{corollary}\label{headOneMoreSimp}
-	$\map \; \rsimp{(r :: rs)} = \map \; \rsimp{} \; (\rsimp{r} :: rs)$
+	The following properties hold, directly from \ref{rsimpIdem}:
+
+	\begin{itemize}
+		\item
+			$\map \; \rsimp{(r :: rs)} = \map \; \rsimp{} \; (\rsimp{r} :: rs)$
+		\item
+			$\rsimp{(\RALTS{rs})} = \rsimp{(\RALTS{\map \; \rsimp{} \; rs})}$
+	\end{itemize}
 \end{corollary}
 \noindent
 This will be useful in later closed form proof's rewriting steps.
@@ -645,42 +713,152 @@
 We use $r_1 \sequal r_2 $ here to denote $\rsimp{r_1} = \rsimp{r_2}$.
 \begin{lemma}
 \begin{itemize}
+	The following equivalence hold:
 	\item
 		$\rsimpalts \; (\RZERO :: rs) \sequal \rsimpalts\; rs$
 	\item
 		$\rsimpalts \; rs \sequal \rsimpalts (\map \; \rsimp{} \; rs)$
 	\item
 		$\RALTS{\RALTS{rs}} \sequal \RALTS{rs}$
+	\item
+		$\sum ((\sum rs_a) :: rs_b) \sequal \sum rs_a @ rs_b$
+	\item
+		$\RALTS{rs} = \RALTS{\map \; \rsimp{} \; rs}$
 \end{itemize}
 \end{lemma}
+\begin{proof}
+	By induction on the lists involved.
+\end{proof}
+\noindent
+Similarly,
+we introduce the equality for $\sum$ when certain child regular expressions
+are $\sum$ themselves:
+\begin{lemma}\label{simpFlatten3}
+	One can flatten the inside $\sum$ of a $\sum$ if it is being 
+	simplified. Concretely,
+	\begin{itemize}
+		\item
+			If for all $r \in rs, rs', rs''$, we have $\good \; r $
+			or $r = \RZERO$, then $\sum (rs' @ rs @ rs'') \sequal 
+			\sum (rs' @ [\sum rs] @ rs'')$ holds. As a corollary,
+		\item
+			$\sum (rs' @ [\sum rs] @ rs'') \sequal \sum (rs' @ rs @ rs'')$
+	\end{itemize}
+\end{lemma}
+\begin{proof}
+	By rewriting steps involving the use of \ref{test} and \ref{rdistinctConcatGeneral}.
+	The second sub-lemma is a corollary of the previous.
+\end{proof}
+%Rewriting steps not put in--too long and complicated-------------------------------
+\begin{comment}
+	\begin{center}
+		$\rsimp{\sum (rs' @ rs @ rs'')}  \stackrel{def of bsimp}{=}$  \\
+		$\rsimpalts \; (\rdistinct{\rflts \; ((\map \; \rsimp{}\; rs') @ (\map \; \rsimp{} \; rs ) @ (\map \; \rsimp{} \; rs''))}{\varnothing})$ \\
+		$\stackrel{by \ref{test}}{=} 
+		\rsimpalts \; (\rdistinct{(\rflts \; rs' @ \rflts \; rs @ \rflts \; rs'')}{
+		\varnothing})$\\
+		$\stackrel{by \ref{rdistinctConcatGeneral}}{=}
+		\rsimpalts \; (\rdistinct{\rflts \; rs'}{\varnothing} @ \rdistinct{(
+		\rflts\; rs @ \rflts \; rs'')}{\rflts \; rs'})$\\
+		
+	\end{center}
+\end{comment}
+%Rewriting steps not put in--too long and complicated-------------------------------
 \noindent
 We need more equalities like the above to enable a closed form,
 but to proceed we need to introduce two rewrite relations,
 to make things smoother.
-\subsubsection{The rewrite relation $\hrewrite$ and $\grewrite$}
+\subsubsection{The rewrite relation $\hrewrite$, $\frewrite$ and $\grewrite$}
 Insired by the success we had in the correctness proof 
 in \ref{Bitcoded2}, where we invented
-a term rewriting system to capture the similarity between terms
-and prove equivalence, we follow suit here defining simplification
-steps as rewriting steps.
+a term rewriting system to capture the similarity between terms,
+we follow suit here defining simplification
+steps as rewriting steps. This allows capturing 
+similarities between terms that would be otherwise
+hard to express.
+
+We use $\hrewrite$ for one-step atomic rewrite of regular expression simplification, 
+$\frewrite$ for rewrite of list of regular expressions that 
+include all operations carried out in $\rflts$, and $\grewrite$ for
+rewriting a list of regular expressions possible in both $\rflts$ and $\rdistinct{}{}$.
+Their reflexive transitive closures are used to denote zero or many steps,
+as was the case in the previous chapter.
 The presentation will be more concise than that in \ref{Bitcoded2}.
 To differentiate between the rewriting steps for annotated regular expressions
 and $\rrexp$s, we add characters $h$ and $g$ below the squig arrow symbol
 to mean atomic simplification transitions 
 of $\rrexp$s and $\rrexp$ lists, respectively.
 
+
+
+	List of one-step rewrite rules for $\rrexp$ ($\hrewrite$):
+
+
 \begin{center}
+\begin{mathpar}
+	\inferrule[RSEQ0L]{}{\RZERO \cdot r_2 \hrewrite \RZERO\\}
+
+	\inferrule[RSEQ0R]{}{r_1 \cdot \RZERO \hrewrite \RZERO\\}
+
+	\inferrule[RSEQ1]{}{(\RONE \cdot r) \hrewrite  r\\}\\	
+	
+	\inferrule[RSEQL]{ r_1 \hrewrite r_2}{r_1 \cdot r_3 \hrewrite r_2 \cdot r_3\\}
+
+	\inferrule[RSEQR]{ r_3 \hrewrite r_4}{r_1 \cdot r_3 \hrewrite r_1 \cdot r_4\\}\\
+
+	\inferrule[RALTSChild]{r \hrewrite r'}{\sum (rs_1 @ [r] @ rs_2) \hrewrite \sum (rs_1 @ [r'] @ rs_2)\\}
+
+	\inferrule[RALTS0]{}{\sum (rs_a @ [\RZERO] @ rs_b) \hrewrite \sum (rs_a @ rs_b)}
+
+	\inferrule[RALTSNested]{}{\sum (rs_a @ [\sum rs_1] @ rs_b) \hrewrite \sum (rs_a @ rs_1 @ rs_b)}
+
+	\inferrule[RALTSNil]{}{ \sum [] \hrewrite \RZERO\\}
+
+	\inferrule[RALTSSingle]{}{ \sum [r] \hrewrite  r\\}	
+
+	\inferrule[RALTSDelete]{\\ r_1 = r_2}{\sum rs_a @ [r_1] @ rs_b @ [r_2] @ rsc \hrewrite \sum rs_a @ [r_1] @ rs_b @ rs_c}
+
+\end{mathpar}
+\end{center}
 
-List of 1-step rewrite rules for regular expressions simplification without bitcodes:
-\begin{figure}
-\caption{the "h-rewrite" rules}
-\[
-r_1 \cdot \ZERO \rightarrow_h \ZERO \]
+%frewrite
+	List of one-step rewrite rules for flattening 
+	a list of  regular expressions($\frewrite$):
+\begin{center}
+\begin{mathpar}
+	\inferrule{}{\RZERO :: rs \frewrite rs \\}
+
+	\inferrule{}{(\sum rs) :: rs_a \frewrite rs @ rs_a \\}
+
+	\inferrule{rs_1 \frewrite rs_2}{r :: rs_1 \frewrite r :: rs_2}
+\end{mathpar}
+\end{center}
+
+	Lists of one-step rewrite rules for flattening and de-duplicating
+	a list of regular expressions ($\grewrite$):
+\begin{center}
+\begin{mathpar}
+	\inferrule{}{\RZERO :: rs \frewrite rs \\}
 
-\[
-\ZERO \cdot r_2 \rightarrow \ZERO 
-\]
-\end{figure}
+	\inferrule{}{(\sum rs) :: rs_a \frewrite rs @ rs_a \\}
+
+	\inferrule{rs_1 \frewrite rs_2}{r :: rs_1 \frewrite r :: rs_2}
+
+	\inferrule[dB]{}{rs_a @ [a] @ rs_b @[a] @ rs_c \grewrite rs_a @ [a] @ rsb @ rsc}
+\end{mathpar}
+\end{center}
+
+\noindent
+The reason why we take the trouble of defining 
+two separate list rewriting definitions $\frewrite$ and $\grewrite$
+is that sometimes $\grewrites$ is slightly too powerful
+that it renders certain equivalence to break after derivative:
+
+$\rsimp{(\rsimpalts \; (\map \; (\_ \backslash x) \; (\rdistinct{(\rflts \; (\map \; (\rsimp{} \; \circ \; (\lambda r. \rderssimp{r}{xs}))))}{\varnothing})))} \neq 
+	\rsimp{(\rsimpalts \; (\rdistinct{(\map \; (\_ \backslash x) \; (\rflts \; (\map \; (\rsimp{} \; \circ \; (\lambda r. \rderssimp{r}{xs})))) ) }{\varnothing})} $
+
+
+
 And we define an "grewrite" relation that works on lists:
 \begin{center}
 \begin{tabular}{lcl}