thys/LexerExt.thy
changeset 220 a8b32da484df
parent 216 ce3d07860a4a
child 221 c21938d0b396
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/LexerExt.thy	Mon Feb 27 14:50:39 2017 +0000
@@ -0,0 +1,946 @@
+   
+theory LexerExt
+  imports Main
+begin
+
+
+section {* Sequential Composition of Languages *}
+
+definition
+  Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
+where 
+  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
+
+text {* Two Simple Properties about Sequential Composition *}
+
+lemma seq_empty [simp]:
+  shows "A ;; {[]} = A"
+  and   "{[]} ;; A = A"
+by (simp_all add: Sequ_def)
+
+lemma seq_null [simp]:
+  shows "A ;; {} = {}"
+  and   "{} ;; A = {}"
+by (simp_all add: Sequ_def)
+
+lemma seq_assoc: 
+  shows "A ;; (B ;; C) = (A ;; B) ;; C"
+apply(auto simp add: Sequ_def)
+apply(metis append_assoc)
+apply(metis)
+done
+
+section {* Semantic Derivative (Left Quotient) of Languages *}
+
+definition
+  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
+where
+  "Der c A \<equiv> {s. c # s \<in> A}"
+
+definition
+  Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
+where
+  "Ders s A \<equiv> {s'. s @ s' \<in> A}"
+
+lemma Der_null [simp]:
+  shows "Der c {} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_empty [simp]:
+  shows "Der c {[]} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_char [simp]:
+  shows "Der c {[d]} = (if c = d then {[]} else {})"
+unfolding Der_def
+by auto
+
+lemma Der_union [simp]:
+  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
+unfolding Der_def
+by auto
+
+lemma Der_Sequ [simp]:
+  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Sequ_def
+by (auto simp add: Cons_eq_append_conv)
+
+lemma Der_UNION: 
+  shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
+by (auto simp add: Der_def)
+
+
+section {* Power operation for Sets *}
+
+fun 
+  Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
+where
+   "A \<up> 0 = {[]}"
+|  "A \<up> (Suc n) = A ;; (A \<up> n)"
+
+lemma Pow_empty [simp]:
+  shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
+by(induct n) (auto simp add: Sequ_def)
+
+lemma Pow_plus:
+  "A \<up> (n + m) = A \<up> n ;; A \<up> m"
+by (induct n) (simp_all add: seq_assoc)
+
+
+section {* Kleene Star for Languages *}
+
+inductive_set
+  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+  for A :: "string set"
+where
+  start[intro]: "[] \<in> A\<star>"
+| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
+
+lemma star_cases:
+  shows "A\<star> = {[]} \<union> A ;; A\<star>"
+unfolding Sequ_def
+by (auto) (metis Star.simps)
+
+lemma star_decomp: 
+  assumes a: "c # x \<in> A\<star>" 
+  shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
+using a
+by (induct x\<equiv>"c # x" rule: Star.induct) 
+   (auto simp add: append_eq_Cons_conv)
+
+lemma Der_star [simp]:
+  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
+proof -    
+  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
+    by (simp only: star_cases[symmetric])
+  also have "... = Der c (A ;; A\<star>)"
+    by (simp only: Der_union Der_empty) (simp)
+  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
+    by simp
+  also have "... =  (Der c A) ;; A\<star>"
+    unfolding Sequ_def Der_def
+    by (auto dest: star_decomp)
+  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
+qed
+
+lemma Star_in_Pow:
+  assumes a: "s \<in> A\<star>"
+  shows "\<exists>n. s \<in> A \<up> n"
+using a
+apply(induct)
+apply(auto)
+apply(rule_tac x="Suc n" in exI)
+apply(auto simp add: Sequ_def)
+done
+
+lemma Pow_in_Star:
+  assumes a: "s \<in> A \<up> n"
+  shows "s \<in> A\<star>"
+using a
+by (induct n arbitrary: s) (auto simp add: Sequ_def)
+
+
+lemma Star_def2: 
+  shows "A\<star> = (\<Union>n. A \<up> n)"
+using Star_in_Pow Pow_in_Star
+by (auto)
+
+
+section {* Regular Expressions *}
+
+datatype rexp =
+  ZERO
+| ONE
+| CHAR char
+| SEQ rexp rexp
+| ALT rexp rexp
+| STAR rexp
+| UPNTIMES rexp nat
+
+section {* Semantics of Regular Expressions *}
+ 
+fun
+  L :: "rexp \<Rightarrow> string set"
+where
+  "L (ZERO) = {}"
+| "L (ONE) = {[]}"
+| "L (CHAR c) = {[c]}"
+| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
+| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
+| "L (STAR r) = (L r)\<star>"
+| "L (UPNTIMES r n) = (\<Union>i\<in> {..n} . (L r) \<up> i)"
+
+
+section {* Nullable, Derivatives *}
+
+fun
+ nullable :: "rexp \<Rightarrow> bool"
+where
+  "nullable (ZERO) = False"
+| "nullable (ONE) = True"
+| "nullable (CHAR c) = False"
+| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
+| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
+| "nullable (STAR r) = True"
+| "nullable (UPNTIMES r n) = True"
+
+fun
+ der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+  "der c (ZERO) = ZERO"
+| "der c (ONE) = ZERO"
+| "der c (CHAR d) = (if c = d then ONE else ZERO)"
+| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
+| "der c (SEQ r1 r2) = 
+     (if nullable r1
+      then ALT (SEQ (der c r1) r2) (der c r2)
+      else SEQ (der c r1) r2)"
+| "der c (STAR r) = SEQ (der c r) (STAR r)"
+| "der c (UPNTIMES r 0) = ZERO"
+| "der c (UPNTIMES r (Suc n)) = SEQ (der c r) (UPNTIMES r n)"
+
+
+fun 
+ ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+  "ders [] r = r"
+| "ders (c # s) r = ders s (der c r)"
+
+
+lemma nullable_correctness:
+  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
+by (induct r) (auto simp add: Sequ_def) 
+
+lemma Suc_reduce_Union:
+  "(\<Union>x\<in>{Suc n..Suc m}. B x) = (\<Union>x\<in>{n..m}. B (Suc x))"
+by (metis UN_extend_simps(10) image_Suc_atLeastAtMost)
+
+lemma Suc_reduce_Union2:
+  "(\<Union>x\<in>{Suc n..}. B x) = (\<Union>x\<in>{n..}. B (Suc x))"
+apply(auto)
+apply(rule_tac x="xa - 1" in bexI)
+apply(simp)
+apply(simp)
+done
+
+lemma Seq_UNION: 
+  shows "(\<Union>x\<in>A. B ;; C x) = B ;; (\<Union>x\<in>A. C x)"
+by (auto simp add: Sequ_def)
+
+lemma Seq_Union:
+  shows "A ;; (\<Union>x\<in>B. C x) = (\<Union>x\<in>B. A ;; C x)"
+by (auto simp add: Sequ_def)
+
+lemma Der_Pow [simp]:
+  shows "Der c (A \<up> (Suc n)) = 
+     (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})"
+unfolding Der_def Sequ_def 
+by(auto simp add: Cons_eq_append_conv Sequ_def)
+
+lemma Suc_Union:
+  "(\<Union>x\<le>Suc m. B x) = (B (Suc m) \<union> (\<Union>x\<le>m. B x))"
+by (metis UN_insert atMost_Suc)
+
+
+lemma test:
+  shows "(\<Union>x\<le>Suc n. Der c (L r \<up> x)) = (\<Union>x\<le>n. Der c (L r) ;; L r \<up> x)"
+apply(induct n)
+apply(simp)
+apply(auto)[1]
+apply(case_tac xa)
+apply(simp)
+apply(simp)
+apply(auto)[1]
+apply(case_tac "[] \<in> L r")
+apply(simp)
+apply(simp)
+by (smt Der_Pow Suc_Union inf_sup_aci(5) inf_sup_aci(7) sup_idem)
+
+
+lemma der_correctness:
+  shows "L (der c r) = Der c (L r)"
+apply(induct c r rule: der.induct) 
+apply(simp_all add: nullable_correctness)[7]
+apply(simp only: der.simps L.simps)
+apply(simp only: Der_UNION)
+apply(simp only: Seq_UNION[symmetric])
+apply(simp add: test)
+done
+
+
+lemma ders_correctness:
+  shows "L (ders s r) = Ders s (L r)"
+apply(induct s arbitrary: r)
+apply(simp_all add: Ders_def der_correctness Der_def)
+done
+
+lemma ders_ZERO:
+  shows "ders s (ZERO) = ZERO"
+apply(induct s)
+apply(simp_all)
+done
+
+lemma ders_ONE:
+  shows "ders s (ONE) = (if s = [] then ONE else ZERO)"
+apply(induct s)
+apply(simp_all add: ders_ZERO)
+done
+
+lemma ders_CHAR:
+  shows "ders s (CHAR c) = (if s = [c] then ONE else 
+                           (if s = [] then (CHAR c) else ZERO))"
+apply(induct s)
+apply(simp_all add: ders_ZERO ders_ONE)
+done
+
+lemma  ders_ALT:
+  shows "ders s (ALT r1 r2) = ALT (ders s r1) (ders s r2)"
+apply(induct s arbitrary: r1 r2)
+apply(simp_all)
+done
+
+section {* Values *}
+
+datatype val = 
+  Void
+| Char char
+| Seq val val
+| Right val
+| Left val
+| Stars "val list"
+
+
+section {* The string behind a value *}
+
+fun 
+  flat :: "val \<Rightarrow> string"
+where
+  "flat (Void) = []"
+| "flat (Char c) = [c]"
+| "flat (Left v) = flat v"
+| "flat (Right v) = flat v"
+| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
+| "flat (Stars []) = []"
+| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
+
+lemma flat_Stars [simp]:
+ "flat (Stars vs) = concat (map flat vs)"
+by (induct vs) (auto)
+
+
+section {* Relation between values and regular expressions *}
+
+inductive 
+  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
+where
+ "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
+| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
+| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
+| "\<turnstile> Void : ONE"
+| "\<turnstile> Char c : CHAR c"
+| "\<turnstile> Stars [] : STAR r"
+| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"
+| "\<turnstile> Stars [] : UPNTIMES r 0"
+| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : UPNTIMES r (Suc n)"
+| "\<lbrakk>\<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : UPNTIMES r (Suc n)"
+
+
+
+inductive_cases Prf_elims:
+  "\<turnstile> v : ZERO"
+  "\<turnstile> v : SEQ r1 r2"
+  "\<turnstile> v : ALT r1 r2"
+  "\<turnstile> v : ONE"
+  "\<turnstile> v : CHAR c"
+(*  "\<turnstile> vs : STAR r"*)
+
+lemma Prf_flat_L:
+  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
+using assms
+apply(induct v r rule: Prf.induct)
+apply(auto simp add: Sequ_def)
+apply(rotate_tac 2)
+apply(rule_tac x="Suc x" in bexI)
+apply(auto simp add: Sequ_def)[2]
+done
+
+lemma Prf_Stars:
+  assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
+  shows "\<turnstile> Stars vs : STAR r"
+using assms
+by(induct vs) (auto intro: Prf.intros)
+
+lemma Prf_Stars_UPNTIMES:
+  assumes "\<forall>v \<in> set vs. \<turnstile> v : r" "(length vs) = n"
+  shows "\<turnstile> Stars vs : UPNTIMES r n"
+using assms
+apply(induct vs arbitrary: n) 
+apply(auto intro: Prf.intros)
+done
+
+lemma Prf_UPNTIMES_bigger:
+  assumes "\<turnstile> Stars vs : UPNTIMES r n" "n \<le> m" 
+  shows "\<turnstile> Stars vs : UPNTIMES r m"
+using assms
+apply(induct m arbitrary:)
+apply(auto)
+using Prf.intros(10) le_Suc_eq by blast
+
+lemma UPNTIMES_Stars:
+ assumes "\<turnstile> v : UPNTIMES r n"
+ shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> length vs \<le> n"
+using assms
+apply(induct n arbitrary: v)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(auto)
+using le_SucI by blast
+
+lemma Star_string:
+  assumes "s \<in> A\<star>"
+  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
+using assms
+apply(induct rule: Star.induct)
+apply(auto)
+apply(rule_tac x="[]" in exI)
+apply(simp)
+apply(rule_tac x="s1#ss" in exI)
+apply(simp)
+done
+
+lemma Star_val:
+  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
+  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
+using assms
+apply(induct ss)
+apply(auto)
+apply (metis empty_iff list.set(1))
+by (metis concat.simps(2) list.simps(9) set_ConsD)
+
+lemma Star_val_length:
+  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
+  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r) \<and> (length vs) = (length ss)"
+using assms
+apply(induct ss)
+apply(auto)
+by (metis List.bind_def bind_simps(2) length_Suc_conv set_ConsD)
+
+
+lemma Star_Pow:
+  assumes "s \<in> A \<up> n"
+  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A) \<and> (length ss = n)"
+using assms
+apply(induct n arbitrary: s)
+apply(auto simp add: Sequ_def)
+apply(drule_tac x="s2" in meta_spec)
+apply(auto)
+apply(rule_tac x="s1#ss" in exI)
+apply(simp)
+done
+
+lemma L_flat_Prf1:
+  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
+using assms
+apply(induct)
+apply(auto simp add: Sequ_def)
+apply(rule_tac x="Suc x" in bexI)
+apply(auto simp add: Sequ_def)[2]
+done
+
+lemma L_flat_Prf2:
+  assumes "s \<in> L r" shows "\<exists>v. \<turnstile> v : r \<and> flat v = s"
+using assms
+apply(induct r arbitrary: s)
+apply(auto simp add: Sequ_def intro: Prf.intros)
+using Prf.intros(1) flat.simps(5) apply blast
+using Prf.intros(2) flat.simps(3) apply blast
+using Prf.intros(3) flat.simps(4) apply blast
+apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
+apply(auto)[1]
+apply(rule_tac x="Stars vs" in exI)
+apply(simp)
+apply (simp add: Prf_Stars)
+apply(drule Star_string)
+apply(auto)
+apply(rule Star_val)
+apply(auto)
+apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x)")
+apply(auto)[1]
+apply(rule_tac x="Stars vs" in exI)
+apply(simp)
+apply(drule_tac n="length vs" in Prf_Stars_UPNTIMES)
+apply(simp)
+using Prf_UPNTIMES_bigger apply blast
+apply(drule Star_Pow)
+apply(auto)
+using Star_val_length by blast
+
+lemma L_flat_Prf:
+  "L(r) = {flat v | v. \<turnstile> v : r}"
+using L_flat_Prf1 L_flat_Prf2 by blast
+
+
+section {* Sulzmann and Lu functions *}
+
+fun 
+  mkeps :: "rexp \<Rightarrow> val"
+where
+  "mkeps(ONE) = Void"
+| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
+| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
+| "mkeps(STAR r) = Stars []"
+| "mkeps(UPNTIMES r n) = Stars []"
+
+
+fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
+where
+  "injval (CHAR d) c Void = Char d"
+| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
+| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
+| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
+| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
+| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
+| "injval (UPNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
+
+section {* Mkeps, injval *}
+
+lemma mkeps_nullable:
+  assumes "nullable(r)" 
+  shows "\<turnstile> mkeps r : r"
+using assms
+apply(induct rule: nullable.induct) 
+apply(auto intro: Prf.intros)
+using Prf.intros(8) Prf_UPNTIMES_bigger by blast
+
+
+lemma mkeps_flat:
+  assumes "nullable(r)" 
+  shows "flat (mkeps r) = []"
+using assms
+by (induct rule: nullable.induct) (auto)
+
+
+lemma Prf_injval:
+  assumes "\<turnstile> v : der c r" 
+  shows "\<turnstile> (injval r c v) : r"
+using assms
+apply(induct r arbitrary: c v rule: rexp.induct)
+apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
+(* STAR *)
+apply(rotate_tac 2)
+apply(erule Prf.cases)
+apply(simp_all)[7]
+apply(auto)
+apply (metis Prf.intros(6) Prf.intros(7))
+apply (metis Prf.intros(7))
+(* UPNTIMES *)
+apply(case_tac x2)
+apply(simp)
+using Prf_elims(1) apply auto[1]
+apply(simp)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(clarify)
+apply(drule UPNTIMES_Stars)
+apply(clarify)
+apply(simp)
+apply(rule Prf.intros(9))
+apply(simp)
+using Prf_Stars_UPNTIMES Prf_UPNTIMES_bigger by blast
+
+lemma Prf_injval_flat:
+  assumes "\<turnstile> v : der c r" 
+  shows "flat (injval r c v) = c # (flat v)"
+using assms
+apply(induct arbitrary: v rule: der.induct)
+apply(auto elim!: Prf_elims split: if_splits)
+apply(metis mkeps_flat)
+apply(rotate_tac 2)
+apply(erule Prf.cases)
+apply(simp_all)
+apply(drule UPNTIMES_Stars)
+apply(clarify)
+apply(simp)
+done
+
+
+
+section {* Our Alternative Posix definition *}
+
+inductive 
+  Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
+where
+  Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
+| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
+| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
+| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
+| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
+    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
+    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
+| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
+    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
+    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
+| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
+| Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r n \<rightarrow> Stars vs; flat v \<noteq> [];
+    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))\<rbrakk>
+    \<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
+| Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []"
+
+
+inductive_cases Posix_elims:
+  "s \<in> ZERO \<rightarrow> v"
+  "s \<in> ONE \<rightarrow> v"
+  "s \<in> CHAR c \<rightarrow> v"
+  "s \<in> ALT r1 r2 \<rightarrow> v"
+  "s \<in> SEQ r1 r2 \<rightarrow> v"
+  "s \<in> STAR r \<rightarrow> v"
+
+lemma Posix1:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "s \<in> L r" "flat v = s"
+using assms
+apply (induct s r v rule: Posix.induct)
+apply(auto simp add: Sequ_def)
+apply(rule_tac x="Suc x" in bexI)
+apply(auto simp add: Sequ_def)
+done
+
+
+lemma Posix1a:
+  assumes "s \<in> r \<rightarrow> v"
+  shows "\<turnstile> v : r"
+using assms
+apply(induct s r v rule: Posix.induct)
+apply(auto intro: Prf.intros)
+using Prf.intros(8) Prf_UPNTIMES_bigger by blast
+
+
+lemma Posix_mkeps:
+  assumes "nullable r"
+  shows "[] \<in> r \<rightarrow> mkeps r"
+using assms
+apply(induct r rule: nullable.induct)
+apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
+apply(subst append.simps(1)[symmetric])
+apply(rule Posix.intros)
+apply(auto)
+done
+
+
+lemma Posix_determ:
+  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
+  shows "v1 = v2"
+using assms
+proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
+  case (Posix_ONE v2)
+  have "[] \<in> ONE \<rightarrow> v2" by fact
+  then show "Void = v2" by cases auto
+next 
+  case (Posix_CHAR c v2)
+  have "[c] \<in> CHAR c \<rightarrow> v2" by fact
+  then show "Char c = v2" by cases auto
+next 
+  case (Posix_ALT1 s r1 v r2 v2)
+  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+  moreover
+  have "s \<in> r1 \<rightarrow> v" by fact
+  then have "s \<in> L r1" by (simp add: Posix1)
+  ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
+  moreover
+  have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+  ultimately have "v = v'" by simp
+  then show "Left v = v2" using eq by simp
+next 
+  case (Posix_ALT2 s r2 v r1 v2)
+  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
+  moreover
+  have "s \<notin> L r1" by fact
+  ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
+    by cases (auto simp add: Posix1) 
+  moreover
+  have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
+  ultimately have "v = v'" by simp
+  then show "Right v = v2" using eq by simp
+next
+  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
+  have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
+       "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
+       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
+  then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
+  apply(cases) apply (auto simp add: append_eq_append_conv2)
+  using Posix1(1) by fastforce+
+  moreover
+  have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
+            "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
+  ultimately show "Seq v1 v2 = v'" by simp
+next
+  case (Posix_STAR1 s1 r v s2 vs v2)
+  have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
+       "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
+       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
+  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
+  apply(cases) apply (auto simp add: append_eq_append_conv2)
+  using Posix1(1) apply fastforce
+  apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
+  using Posix1(2) by blast
+  moreover
+  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+            "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+  ultimately show "Stars (v # vs) = v2" by auto
+next
+  case (Posix_STAR2 r v2)
+  have "[] \<in> STAR r \<rightarrow> v2" by fact
+  then show "Stars [] = v2" by cases (auto simp add: Posix1)
+next
+  case (Posix_UPNTIMES1 s1 r v s2 n vs v2)
+  have "(s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> v2" 
+       "s1 \<in> r \<rightarrow> v" "s2 \<in> (UPNTIMES r n) \<rightarrow> Stars vs" "flat v \<noteq> []"
+       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))" by fact+
+  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r n) \<rightarrow> (Stars vs')"
+  apply(cases) apply (auto simp add: append_eq_append_conv2)
+  using Posix1(1) apply fastforce
+  apply (metis Posix1(1) Posix_UPNTIMES1.hyps(6) append_Nil append_Nil2)
+  using Posix1(2) by blast
+  moreover
+  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
+            "\<And>v2. s2 \<in> UPNTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
+  ultimately show "Stars (v # vs) = v2" by auto
+next
+  case (Posix_UPNTIMES2 r n v2)
+  have "[] \<in> UPNTIMES r n \<rightarrow> v2" by fact
+  then show "Stars [] = v2" by cases (auto simp add: Posix1)
+qed
+
+
+lemma Posix_injval:
+  assumes "s \<in> (der c r) \<rightarrow> v"
+  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
+using assms
+proof(induct r arbitrary: s v rule: rexp.induct)
+  case ZERO
+  have "s \<in> der c ZERO \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
+next
+  case ONE
+  have "s \<in> der c ONE \<rightarrow> v" by fact
+  then have "s \<in> ZERO \<rightarrow> v" by simp
+  then have "False" by cases
+  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
+next 
+  case (CHAR d)
+  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
+  then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
+  proof (cases)
+    case eq
+    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+    then have "s \<in> ONE \<rightarrow> v" using eq by simp
+    then have eqs: "s = [] \<and> v = Void" by cases simp
+    show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
+    by (auto intro: Posix.intros)
+  next
+    case ineq
+    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
+    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
+    then have "False" by cases
+    then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
+  qed
+next
+  case (ALT r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
+  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
+  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
+              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
+              by cases auto
+  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
+  proof (cases)
+    case left
+    have "s \<in> der c r1 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
+    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
+  next 
+    case right
+    have "s \<notin> L (der c r1)" by fact
+    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
+    moreover 
+    have "s \<in> der c r2 \<rightarrow> v'" by fact
+    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
+    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
+      by (auto intro: Posix.intros)
+    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
+  qed
+next
+  case (SEQ r1 r2)
+  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
+  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
+  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
+  then consider 
+        (left_nullable) v1 v2 s1 s2 where 
+        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+      | (right_nullable) v1 s1 s2 where 
+        "v = Right v1" "s = s1 @ s2"  
+        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
+      | (not_nullable) v1 v2 s1 s2 where
+        "v = Seq v1 v2" "s = s1 @ s2" 
+        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
+        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
+  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
+    proof (cases)
+      case left_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
+    next
+      case right_nullable
+      have "nullable r1" by fact
+      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
+      moreover
+      have "s \<in> der c r2 \<rightarrow> v1" by fact
+      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
+      moreover
+      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
+        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
+      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
+      by(rule Posix.intros)
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
+    next
+      case not_nullable
+      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
+      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
+      moreover
+      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
+      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
+      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
+        by (rule_tac Posix.intros) (simp_all) 
+      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
+    qed
+next
+  case (STAR r)
+  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
+  then consider
+      (cons) v1 vs s1 s2 where 
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
+        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
+        apply(rotate_tac 3)
+        apply(erule_tac Posix_elims(6))
+        apply (simp add: Posix.intros(6))
+        using Posix.intros(7) by blast
+    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
+    proof (cases)
+      case cons
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
+        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
+    qed
+next 
+  case (UPNTIMES r n)
+  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+  have "s \<in> der c (UPNTIMES r n) \<rightarrow> v" by fact
+  then consider
+      (cons) m v1 vs s1 s2 where 
+        "n = Suc m"
+        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
+        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (UPNTIMES r m) \<rightarrow> (Stars vs)"
+        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
+        apply(case_tac n)
+        apply(simp)
+        using Posix_elims(1) apply blast
+        apply(simp)
+        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
+        by (metis Posix1a UPNTIMES_Stars)
+    then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" 
+    proof (cases)
+      case cons
+        have "n = Suc m" by fact
+        moreover
+          have "s1 \<in> der c r \<rightarrow> v1" by fact
+          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+        moreover
+          have "s2 \<in> UPNTIMES r m \<rightarrow> Stars vs" by fact
+        moreover 
+          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
+          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+          then have "flat (injval r c v1) \<noteq> []" by simp
+        moreover 
+          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" by fact
+          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
+            by (simp add: der_correctness Der_def)
+        ultimately 
+        have "((c # s1) @ s2) \<in> UPNTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
+          apply(rule_tac Posix.intros(8))
+          apply(simp_all)
+          done
+        then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" using cons by(simp)
+    qed
+qed
+
+
+section {* The Lexer by Sulzmann and Lu  *}
+
+fun 
+  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
+where
+  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
+| "lexer r (c#s) = (case (lexer (der c r) s) of  
+                    None \<Rightarrow> None
+                  | Some(v) \<Rightarrow> Some(injval r c v))"
+
+
+lemma lexer_correct_None:
+  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
+apply(induct s arbitrary: r)
+apply(simp add: nullable_correctness)
+apply(drule_tac x="der a r" in meta_spec)
+apply(auto simp add: der_correctness Der_def)
+done
+
+lemma lexer_correct_Some:
+  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
+apply(induct s arbitrary: r)
+apply(auto simp add: Posix_mkeps nullable_correctness)[1]
+apply(drule_tac x="der a r" in meta_spec)
+apply(simp add: der_correctness Der_def)
+apply(rule iffI)
+apply(auto intro: Posix_injval simp add: Posix1(1))
+done 
+
+lemma lexer_correctness:
+  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
+  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
+using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
+using Posix1(1) lexer_correct_None lexer_correct_Some by blast
+
+
+end
\ No newline at end of file