--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/RegLangs.thy Sun Feb 17 22:15:06 2019 +0000
@@ -0,0 +1,198 @@
+
+theory RegLangs
+ imports Main "~~/src/HOL/Library/Sublist"
+begin
+
+section {* Sequential Composition of Languages *}
+
+definition
+ Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
+where
+ "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
+
+text {* Two Simple Properties about Sequential Composition *}
+
+lemma Sequ_empty_string [simp]:
+ shows "A ;; {[]} = A"
+ and "{[]} ;; A = A"
+by (simp_all add: Sequ_def)
+
+lemma Sequ_empty [simp]:
+ shows "A ;; {} = {}"
+ and "{} ;; A = {}"
+by (simp_all add: Sequ_def)
+
+
+section {* Semantic Derivative (Left Quotient) of Languages *}
+
+definition
+ Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Der c A \<equiv> {s. c # s \<in> A}"
+
+definition
+ Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
+where
+ "Ders s A \<equiv> {s'. s @ s' \<in> A}"
+
+lemma Der_null [simp]:
+ shows "Der c {} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_empty [simp]:
+ shows "Der c {[]} = {}"
+unfolding Der_def
+by auto
+
+lemma Der_char [simp]:
+ shows "Der c {[d]} = (if c = d then {[]} else {})"
+unfolding Der_def
+by auto
+
+lemma Der_union [simp]:
+ shows "Der c (A \<union> B) = Der c A \<union> Der c B"
+unfolding Der_def
+by auto
+
+lemma Der_Sequ [simp]:
+ shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Sequ_def
+by (auto simp add: Cons_eq_append_conv)
+
+
+section {* Kleene Star for Languages *}
+
+inductive_set
+ Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+ for A :: "string set"
+where
+ start[intro]: "[] \<in> A\<star>"
+| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
+
+(* Arden's lemma *)
+
+lemma Star_cases:
+ shows "A\<star> = {[]} \<union> A ;; A\<star>"
+unfolding Sequ_def
+by (auto) (metis Star.simps)
+
+lemma Star_decomp:
+ assumes "c # x \<in> A\<star>"
+ shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
+using assms
+by (induct x\<equiv>"c # x" rule: Star.induct)
+ (auto simp add: append_eq_Cons_conv)
+
+lemma Star_Der_Sequ:
+ shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
+unfolding Der_def Sequ_def
+by(auto simp add: Star_decomp)
+
+
+lemma Der_star [simp]:
+ shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
+proof -
+ have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
+ by (simp only: Star_cases[symmetric])
+ also have "... = Der c (A ;; A\<star>)"
+ by (simp only: Der_union Der_empty) (simp)
+ also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
+ by simp
+ also have "... = (Der c A) ;; A\<star>"
+ using Star_Der_Sequ by auto
+ finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
+qed
+
+lemma Star_concat:
+ assumes "\<forall>s \<in> set ss. s \<in> A"
+ shows "concat ss \<in> A\<star>"
+using assms by (induct ss) (auto)
+
+lemma Star_split:
+ assumes "s \<in> A\<star>"
+ shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
+using assms
+ apply(induct rule: Star.induct)
+ using concat.simps(1) apply fastforce
+ apply(clarify)
+ by (metis append_Nil concat.simps(2) set_ConsD)
+
+
+
+section {* Regular Expressions *}
+
+datatype rexp =
+ ZERO
+| ONE
+| CHAR char
+| SEQ rexp rexp
+| ALT rexp rexp
+| STAR rexp
+
+section {* Semantics of Regular Expressions *}
+
+fun
+ L :: "rexp \<Rightarrow> string set"
+where
+ "L (ZERO) = {}"
+| "L (ONE) = {[]}"
+| "L (CHAR c) = {[c]}"
+| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
+| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
+| "L (STAR r) = (L r)\<star>"
+
+
+section {* Nullable, Derivatives *}
+
+fun
+ nullable :: "rexp \<Rightarrow> bool"
+where
+ "nullable (ZERO) = False"
+| "nullable (ONE) = True"
+| "nullable (CHAR c) = False"
+| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
+| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
+| "nullable (STAR r) = True"
+
+
+fun
+ der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "der c (ZERO) = ZERO"
+| "der c (ONE) = ZERO"
+| "der c (CHAR d) = (if c = d then ONE else ZERO)"
+| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
+| "der c (SEQ r1 r2) =
+ (if nullable r1
+ then ALT (SEQ (der c r1) r2) (der c r2)
+ else SEQ (der c r1) r2)"
+| "der c (STAR r) = SEQ (der c r) (STAR r)"
+
+fun
+ ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
+where
+ "ders [] r = r"
+| "ders (c # s) r = ders s (der c r)"
+
+
+lemma nullable_correctness:
+ shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
+by (induct r) (auto simp add: Sequ_def)
+
+lemma der_correctness:
+ shows "L (der c r) = Der c (L r)"
+by (induct r) (simp_all add: nullable_correctness)
+
+lemma ders_correctness:
+ shows "L (ders s r) = Ders s (L r)"
+ by (induct s arbitrary: r)
+ (simp_all add: Ders_def der_correctness Der_def)
+
+lemma ders_append:
+ shows "ders (s1 @ s2) r = ders s2 (ders s1 r)"
+ by (induct s1 arbitrary: s2 r) (auto)
+
+
+
+end
\ No newline at end of file