thys3/Paper.thy
changeset 615 8881a09a06fd
parent 599 a5f666410101
child 616 8907d4b6316d
--- a/thys3/Paper.thy	Wed Oct 12 14:08:06 2022 +0100
+++ b/thys3/Paper.thy	Wed Oct 12 15:23:42 2022 +0100
@@ -175,7 +175,7 @@
 They make some informal claims about the correctness and linear behaviour
 of this version, but do not provide any supporting proof arguments, not
 even ``pencil-and-paper'' arguments. They write about their bitcoded
-\emph{incremental parsing method} (that is the algorithm to be formalised
+\emph{incremental parsing method} (that is the algorithm to be fixed and formalised
 in this paper):
 %
 \begin{quote}\it
@@ -186,8 +186,8 @@
   have to work out all proof details.'' \cite[Page 14]{Sulzmann2014}
 \end{quote}  
 
-\noindent{}\textbf{Contributions:} We have implemented in Isabelle/HOL
-the derivative-based lexing algorithm of Sulzmann and Lu
+\noindent{}\textbf{Contributions:} We fill this gap by implementing in Isabelle/HOL
+our version of the derivative-based lexing algorithm of Sulzmann and Lu
 \cite{Sulzmann2014} where regular expressions are annotated with
 bitsequences. We define the crucial simplification function as a
 recursive function, without the need of a fixpoint operation. One objective of
@@ -200,7 +200,7 @@
 Inspired by Scala's library for lists, we shall instead use a @{text
 distinctWith} function that finds duplicates under an ``erasing'' function
 which deletes bitcodes before comparing regular expressions.
-We shall also introduce our \emph{own} argument and definitions for
+We shall also introduce our \emph{own} arguments and definitions for
 establishing the correctness of the bitcoded algorithm when 
 simplifications are included. Finally we
 establish that the size of derivatives can be finitely bounded.\medskip%\footnote{ In this paper, we shall first briefly introduce the basic notions
@@ -300,7 +300,7 @@
   regular expressions.  
 %
 \begin{center}
-\begin{tabular}{c @ {\hspace{-1mm}}c}
+\begin{tabular}{c @ {\hspace{-9mm}}c}
   \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
   @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
   @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
@@ -330,11 +330,11 @@
 
   \noindent
   We can extend this definition to give derivatives w.r.t.~strings,
-  namely @{thm (lhs) ders.simps(1)}$\dn$@{thm (rhs) ders.simps(1)}
+  namely as @{thm (lhs) ders.simps(1)}$\dn$@{thm (rhs) ders.simps(1)}
   and @{thm (lhs) ders.simps(2)}$\dn$@{thm (rhs) ders.simps(2)}.
   Using @{text nullable} and the derivative operation, we can
 define a simple regular expression matcher, namely
-$@{text "match s r"} \;\dn\; @{term nullable}(r\backslash s)$.
+$@{text "match s r"} \dn @{term nullable}(r\backslash s)$.
 This is essentially Brzozowski's algorithm from 1964. Its
 main virtue is that the algorithm can be easily implemented as a
 functional program (either in a functional programming language or in
@@ -357,8 +357,8 @@
 The novel idea of Sulzmann and Lu is to extend this algorithm for 
 lexing, where it is important to find out which part of the string
 is matched by which part of the regular expression.
-For this Sulzmann and Lu presented two lexing algorithms in their paper
-  \cite{Sulzmann2014}. The first algorithm consists of two phases: first a
+For this Sulzmann and Lu presented two lexing algorithms in their
+paper~\cite{Sulzmann2014}. The first algorithm consists of two phases: first a
   matching phase (which is Brzozowski's algorithm) and then a value
   construction phase. The values encode \emph{how} a regular expression
   matches a string. \emph{Values} are defined as the inductive datatype
@@ -384,16 +384,16 @@
   version of this relation is defined the following six rules for the values:
   %
   \begin{center}
-  \begin{tabular}{@ {}c@ {}}
-  @{thm[mode=Axiom] Prf.intros(4)}\qquad
+  \begin{tabular}{@ {}l@ {}}
+  @{thm[mode=Axiom] Prf.intros(4)}\quad
+  @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]}\quad
+  @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>2" "r\<^sub>1"]}\quad
+  @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]}\medskip\\
   @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\qquad
-  @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]}\qquad
-  @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>2" "r\<^sub>1"]}\qquad
-  @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]}\medskip\\
   @{thm[mode=Rule] Prf.intros(6)[of "vs" "r"]}\qquad
   $\mprset{flushleft}\inferrule{
   @{thm (prem 1) Prf.intros(7)[of "vs\<^sub>1" "r"  "vs\<^sub>2" "n"]}\\\\
-  @{thm (prem 2) Prf.intros(7)[of "vs\<^sub>1" "r"  "vs\<^sub>2" "n"]}\quad
+  @{thm (prem 2) Prf.intros(7)[of "vs\<^sub>1" "r"  "vs\<^sub>2" "n"]}\\\\
   @{thm (prem 3) Prf.intros(7)[of "vs\<^sub>1" "r"  "vs\<^sub>2" "n"]}
   }
   {@{thm (concl) Prf.intros(7)[of "vs\<^sub>1" "r"  "vs\<^sub>2" "n"]}}
@@ -488,31 +488,35 @@
   @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
   @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
   @{thm (lhs) mkeps.simps(5)} & $\dn$ & @{thm (rhs) mkeps.simps(5)}\\
-  \end{tabular}\medskip\\
+  \end{tabular}
+  \medskip\\
 
-  \begin{tabular}{@ {}cc@ {}}
+  %!\begin{tabular}{@ {}cc@ {}}
   \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}@ {}}
   @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
   @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
       @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
   @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
       @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
+  %!
+  @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
+      & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
+  @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
+      & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
+  @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ &
+  @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
+  %!
   @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$ 
       & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
   @{thm (lhs) injval.simps(8)[of "r" "n" "c" "v" "vs"]} & $\dn$ 
       & @{thm (rhs) injval.simps(8)[of "r" "n" "c" "v" "vs"]}
   \end{tabular}
-  &
-  \begin{tabular}{@ {\hspace{-3mm}}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}@ {}}
-  @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
-      & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
-  @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
-      & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
-  @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$\\ 
-  \multicolumn{3}{@ {}r@ {}}{@{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}}\\ \mbox{}\\ \mbox{}
-  \end{tabular}
-  \end{tabular}
-  \end{tabular}\smallskip
+  %!&
+  %!\begin{tabular}{@ {\hspace{-3mm}}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}@ {}}
+  
+  %!\end{tabular}
+  %!\end{tabular}
+  \end{tabular}%!\smallskip
   \end{center}
 
   \noindent
@@ -605,7 +609,7 @@
   @{thm (lhs) lexer.simps(1)} & $\dn$ & @{thm (rhs) lexer.simps(1)}\\
   @{thm (lhs) lexer.simps(2)} & $\dn$ & @{text "case"} @{term "lexer (der c r) s"} @{text of}
                      @{term "None"}  @{text "\<Rightarrow>"} @{term None}\\
-                     & & \hspace{24mm}$|\;$ @{term "Some v"} @{text "\<Rightarrow>"} @{term "Some (injval r c v)"}                          
+                     & & \hspace{27mm}$|\;$ @{term "Some v"} @{text "\<Rightarrow>"} @{term "Some (injval r c v)"}                          
   \end{tabular}
   \end{center}
 
@@ -624,7 +628,7 @@
 
   \begin{proposition}\mbox{}\label{lexercorrect}
   \textrm{(1)} @{thm (lhs) lexer_correct_None} if and only if @{thm (rhs) lexer_correct_None}.\\
-  \mbox{\hspace{29mm}}\textrm{(2)}\; @{thm (lhs) lexer_correct_Some} if and only if @{thm (rhs) lexer_correct_Some}.
+  \mbox{\hspace{23.5mm}}\textrm{(2)}\; @{thm (lhs) lexer_correct_Some} if and only if @{thm (rhs) lexer_correct_Some}.
   %
   % \smallskip\\
   %\begin{tabular}{ll}
@@ -651,17 +655,20 @@
   Sulzmann and Lu describe another algorithm that also generates POSIX
   values but dispenses with the second phase where characters are
   injected ``back'' into values. For this they annotate bitcodes to
-  regular expressions, which we define in Isabelle/HOL as the datatype
+  regular expressions, which we define in Isabelle/HOL as the datatype\medskip
 
-  \begin{center}
-  @{term breg} $\;::=\;$ @{term "AZERO"}
-               $\;\mid\;$ @{term "AONE bs"}
-               $\;\mid\;$ @{term "ACHAR bs c"}
-               $\;\mid\;$ @{term "AALTs bs rs"}
-               $\;\mid\;$ @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}
-               $\;\mid\;$ @{term "ASTAR bs r"}
-	       $\;\mid\;$ @{term "ANTIMES bs r n"}
-  \end{center}
+  %!\begin{center}
+  \noindent
+  \begin{minipage}{1.01\textwidth}
+  \,@{term breg} $\,::=\,$ @{term "AZERO"}
+               $\,\mid$ @{term "AONE bs"}
+               $\,\mid$ @{term "ACHAR bs c"}
+               $\,\mid$ @{term "AALTs bs rs"}
+               $\,\mid$ @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}
+               $\,\mid$ @{term "ASTAR bs r"}
+	       $\,\mid$ \mbox{@{term "ANTIMES bs r n"}}\hfill\mbox{}
+  \end{minipage}\medskip	       
+  %!\end{center}
 
   \noindent where @{text bs} stands for bitsequences; @{text r},
   @{text "r\<^sub>1"} and @{text "r\<^sub>2"} for bitcoded regular
@@ -677,7 +684,7 @@
   function for how values can be coded into bitsequences.
 
   \begin{center}
-  \begin{tabular}{cc}
+  \begin{tabular}{c@ {\hspace{5mm}}c}
   \begin{tabular}{lcl}
   @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
   @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
@@ -704,7 +711,7 @@
   indicates the end of the list. The lossiness makes the process of
   decoding a bit more involved, but the point is that if we have a
   regular expression \emph{and} a bitsequence of a corresponding value,
-  then we can always decode the value accurately (see Fig.~\ref{decode}).
+  then we can always decode the value accurately~(see Fig.~\ref{decode}).
   The function \textit{decode} checks whether all of the bitsequence is
   consumed and returns the corresponding value as @{term "Some v"}; otherwise
   it fails with @{text "None"}. We can establish that for a value $v$
@@ -715,7 +722,7 @@
   %defined by using two functions called $\textit{decode}'$ and
   %\textit{decode}:
 
-  \begin{figure}
+  \begin{figure}[t]
   \begin{center}
   \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
   $\textit{decode}'\,bs\,(\ONE)$ & $\;\dn\;$ & $(\Empty, bs)$\\
@@ -735,11 +742,11 @@
          $\textit{let}\,(v, bs_1) = \textit{decode}'\,bs\,r\;\textit{in}$\\
   & &   $\textit{let}\,(\Stars\,vs, bs_2) = \textit{decode}'\,bs_1\,r^*$
         \hspace{2mm}$\textit{in}\;(\Stars\,v\!::\!vs, bs_2)$\\
-  $\textit{decode}'\,bs\,(r^{\{n\}})$ & $\dn$ & $\textit{decode}'\,bs\,r^*$\smallskip\medskip\\
+  $\textit{decode}'\,bs\,(r^{\{n\}})$ & $\dn$ & $\textit{decode}'\,bs\,r^*$\smallskip\smallskip\\
 
   $\textit{decode}\,bs\,r$ & $\dn$ & 
      $\textit{let}\,(v, bs') = \textit{decode}'\,bs\,r\;\textit{in}$\\
-  & & $\;\;\;\,\textit{if}\;bs' = []\;\textit{then}\;\textit{Some}\,v\;\textit{else}\;\textit{None}$\\[-4mm]   
+  & & $\;\;\;\,\textit{if}\;bs' = []\;\textit{then}\;\textit{Some}\,v\;\textit{else}\;\textit{None}$\\[-5mm]   
   \end{tabular}    
   \end{center}
   \caption{Two functions, called $\textit{decode}'$ and \textit{decode}, for decoding a value from a bitsequence with the help of a regular expression.\\[-5mm]}\label{decode}
@@ -763,10 +770,12 @@
   in order to transform (standard) regular expressions into annotated
   regular expressions. We write this operation as $r^\uparrow$.
   This internalisation uses the following
-  \emph{fuse} function.	     
+  \emph{fuse} function.\medskip
+  
   %
-  \begin{center}
-  \begin{tabular}{@ {}cc@ {}}
+  %!\begin{center}
+  \noindent\begin{minipage}{\textwidth}
+  \begin{tabular}{@ {}c@ {\hspace{3mm}}c@ {}}
   \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
   $\textit{fuse}\,bs\,(\textit{ZERO})$ & $\dn$ & $\textit{ZERO}$\\
   $\textit{fuse}\,bs\,(\textit{ONE}\,bs')$ & $\dn$ &
@@ -786,24 +795,44 @@
      $\textit{NT}\,(bs\,@\,bs')\,r\,n$   
   \end{tabular}
   \end{tabular}
-  \end{center}    
+  \end{minipage}\medskip
+  %!\end{center}    
 
   \noindent
   A regular expression can then be \emph{internalised} into a bitcoded
   regular expression as follows:
   %
+  %!\begin{center}
+  %!\begin{tabular}{@ {}c@ {\hspace{2mm}}c@ {\hspace{2mm}}c@ {}}
+  %!\begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  %!$(\ZERO)^\uparrow$ & $\dn$ & $\textit{ZERO}$\\
+  %!$(\ONE)^\uparrow$ & $\dn$ & $\textit{ONE}\,[]$
+  %!\end{tabular}
+  %!&
+  %!\begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  %!$(c)^\uparrow$ & $\dn$ & $\textit{CHAR}\,[]\,c$\\
+  %!$(r^*)^\uparrow$ & $\dn$ & $\textit{STAR}\;[]\,r^\uparrow$\\
+  %!$(r^{\{n\}})^\uparrow$ & $\dn$ &
+  %!      $\textit{NT}\;[]\,r^\uparrow\,n$
+  %!\end{tabular}
+  %!&
+  %!\begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  %!$(r_1 + r_2)^\uparrow$ & $\dn$ &
+  %!       $\textit{ALT}\;[]\,(\textit{fuse}\,[\Z]\,r_1^\uparrow)\,
+  %!                          (\textit{fuse}\,[\S]\,r_2^\uparrow)$\\
+  %!$(r_1\cdot r_2)^\uparrow$ & $\dn$ &
+  %!       $\textit{SEQ}\;[]\,r_1^\uparrow\,r_2^\uparrow$
+  %!\end{tabular}
+  %!\end{tabular}
+  %!\end{center}
+  %!
   \begin{center}
-  \begin{tabular}{@ {}ccc@ {}}
+  \begin{tabular}{@ {}c@ {\hspace{7mm}}c@ {}}
   \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
   $(\ZERO)^\uparrow$ & $\dn$ & $\textit{ZERO}$\\
-  $(\ONE)^\uparrow$ & $\dn$ & $\textit{ONE}\,[]$
-  \end{tabular}
-  &
-  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  $(\ONE)^\uparrow$ & $\dn$ & $\textit{ONE}\,[]$\\
   $(c)^\uparrow$ & $\dn$ & $\textit{CHAR}\,[]\,c$\\
   $(r^*)^\uparrow$ & $\dn$ & $\textit{STAR}\;[]\,r^\uparrow$\\
-  $(r^{\{n\}})^\uparrow$ & $\dn$ &
-        $\textit{NT}\;[]\,r^\uparrow\,n$
   \end{tabular}
   &
   \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
@@ -811,7 +840,9 @@
          $\textit{ALT}\;[]\,(\textit{fuse}\,[\Z]\,r_1^\uparrow)\,
                             (\textit{fuse}\,[\S]\,r_2^\uparrow)$\\
   $(r_1\cdot r_2)^\uparrow$ & $\dn$ &
-         $\textit{SEQ}\;[]\,r_1^\uparrow\,r_2^\uparrow$
+         $\textit{SEQ}\;[]\,r_1^\uparrow\,r_2^\uparrow$\\
+  $(r^{\{n\}})^\uparrow$ & $\dn$ &
+        $\textit{NT}\;[]\,r^\uparrow\,n$	 
   \end{tabular}
   \end{tabular}
   \end{center}    
@@ -826,19 +857,19 @@
   bitcoded regular expressions.
   %
   \begin{center}
-  \begin{tabular}{@ {\hspace{-1mm}}c@ {\hspace{0mm}}c@ {}}
+  \begin{tabular}{@ {\hspace{-1mm}}c@ {\hspace{6mm}}c@ {}}
   \begin{tabular}{@ {}l@ {\hspace{0.5mm}}c@ {\hspace{1mm}}l}
   $\textit{bnullable}\,(\textit{ZERO})$ & $\dn$ & $\textit{False}$\\
   $\textit{bnullable}\,(\textit{ONE}\,bs)$ & $\dn$ & $\textit{True}$\\
   $\textit{bnullable}\,(\textit{CHAR}\,bs\,c)$ & $\dn$ & $\textit{False}$\\
-  $\textit{bnullable}\,(\textit{ALTs}\,bs\,\rs)$ & $\dn$ &
-     $\exists\, r \in \rs. \,\textit{bnullable}\,r$\\
-  $\textit{bnullable}\,(\textit{SEQ}\,bs\,r_1\,r_2)$ & $\dn$ &
-     $\textit{bnullable}\,r_1\wedge \textit{bnullable}\,r_2$\\
+  $\textit{bnullable}\,(\textit{ALTs}\,bs\,\rs)$ & $\dn$ &\\
+  \multicolumn{3}{l}{$\quad\exists\, r \in \rs. \,\textit{bnullable}\,r$}\\
+  $\textit{bnullable}\,(\textit{SEQ}\,bs\,r_1\,r_2)$ & $\dn$ &\\
+  \multicolumn{3}{l}{$\quad\textit{bnullable}\,r_1\wedge \textit{bnullable}\,r_2$}\\
   $\textit{bnullable}\,(\textit{STAR}\,bs\,r)$ & $\dn$ &
      $\textit{True}$\\
   $\textit{bnullable}\,(\textit{NT}\,bs\,r\,n)$ & $\dn$ &\\
-  \multicolumn{3}{l}{$\textit{if}\;n = 0\;\textit{then}\;\textit{True}\;
+  \multicolumn{3}{l}{$\quad\textit{if}\;n = 0\;\textit{then}\;\textit{True}\;
   \textit{else}\;\textit{bnullable}\,r$}\\
   \end{tabular}
   &
@@ -847,15 +878,15 @@
   $\textit{bmkeps}\,(\textit{ALTs}\,bs\,\rs)$ & $\dn$ &
   $bs\,@\,\textit{bmkepss}\,\rs$\\
   $\textit{bmkeps}\,(\textit{SEQ}\,bs\,r_1\,r_2)$ & $\dn$ &\\
-  \multicolumn{3}{l}{$bs \,@\,\textit{bmkeps}\,r_1\,@\, \textit{bmkeps}\,r_2$}\\
+  \multicolumn{3}{l}{$\quad{}bs \,@\,\textit{bmkeps}\,r_1\,@\, \textit{bmkeps}\,r_2$}\\
   $\textit{bmkeps}\,(\textit{STAR}\,bs\,r)$ & $\dn$ &
      $bs \,@\, [\S]$\\
    $\textit{bmkeps}\,(\textit{NT}\,bs\,r\,n)$ & $\dn$ &\\
-   \multicolumn{3}{l@ {}}{$\textit{if}\;n=0\;\textit{then}\;bs \,@\, [\S]$}\\
-   \multicolumn{3}{l@ {}}{$\textit{else}\,bs \,@\, [\Z] \,@\, \textit{bmkeps}\,r\,@\,
+   \multicolumn{3}{l@ {}}{$\quad\textit{if}\;n=0\;\textit{then}\;bs \,@\, [\S]$}\\
+   \multicolumn{3}{l@ {}}{$\quad\textit{else}\,bs \,@\, [\Z] \,@\, \textit{bmkeps}\,r\,@\,
         \textit{bmkeps}\,(@{term "ANTIMES [] r (n - 1)"})$}\\   
   $\textit{bmkepss}\,(r\!::\!\rs)$ & $\dn$ &\\
-  \multicolumn{3}{l}{$\textit{if}\;\textit{bnullable}\,r\,\textit{then}\;\textit{bmkeps}\,r\;
+  \multicolumn{3}{l}{$\quad\textit{if}\;\textit{bnullable}\,r\,\textit{then}\;\textit{bmkeps}\,r\;
   \textit{else}\;\textit{bmkepss}\,\rs$}
   \end{tabular}
   \end{tabular}
@@ -869,7 +900,7 @@
   that contribute to constructing a POSIX value.	
   % 
   \begin{center}
-  \begin{tabular}{@ {}lcl@ {}}
+  \begin{tabular}{@ {}l@ {\hspace{-1mm}}cl@ {}}
   $(\textit{ZERO})\backslash c$ & $\;\dn\;$ & $\textit{ZERO}$\\ 
   $(\textit{ONE}\;bs)\backslash c$ & $\;\dn\;$ & $\textit{ZERO}$\\  
   $(\textit{CHAR}\;bs\,d)\backslash c$ & $\dn$ &
@@ -901,9 +932,10 @@
   \begin{center}
 \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
   $\textit{blexer}\;r\,s$ & $\dn$ &
-      $\textit{let}\;r_{der} = (r^\uparrow)\backslash s\;\textit{in}$                
-  $\;\;\textit{if}\; \textit{bnullable}(r_{der}) \;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,r_{der})\,r
-       \;\;\textit{else}\;\textit{None}$
+      $\textit{let}\;r_{der} = (r^\uparrow)\backslash s\;\textit{in}$\\                
+  & & $\;\;\;\textit{if}\; \textit{bnullable}(r_{der})$\\
+  & & $\;\;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,r_{der})\,r$\\
+  & & $\;\;\;\textit{else}\;\textit{None}$
 \end{tabular}
 \end{center}
 
@@ -958,8 +990,8 @@
 
 \begin{lemma}\label{bnullable}%\mbox{}\smallskip\\
 \textit{(1)} $(r\backslash s)^\downarrow = (r^\downarrow)\backslash s$\\    
-\mbox{\hspace{22mm}}\textit{(2)} $\textit{bnullable}(r)$ iff $\textit{nullable}(r^\downarrow)$\\
-\mbox{\hspace{22mm}}\textit{(3)} $\textit{bmkeps}(r) = \textit{retrieve}\,r\,(\textit{mkeps}\,(r^\downarrow))$ provided $\textit{nullable}(r^\downarrow)$
+\mbox{\hspace{17mm}}\textit{(2)} $\textit{bnullable}(r)$ iff $\textit{nullable}(r^\downarrow)$\\
+\mbox{\hspace{17mm}}\textit{(3)} $\textit{bmkeps}(r) = \textit{retrieve}\,r\,(\textit{mkeps}\,(r^\downarrow))$ provided $\textit{nullable}(r^\downarrow)$
 %\begin{tabular}{ll}
 %\textit{(1)} & $(r\backslash s)^\downarrow = (r^\downarrow)\backslash s$\\    
 %\textit{(2)} & $\textit{bnullable}(r)$ iff $\textit{nullable}(r^\downarrow)$\\
@@ -1018,7 +1050,7 @@
 and then retrieve the corresponding bitcoded version, followed by a
 decoding step.
 
-\begin{lemma}[Main Lemma]\label{mainlemma}\it
+\begin{lemma}[Main Lemma]\label{mainlemma}\mbox{}\\\it
 If $\vdash v : r\backslash s$ then 
 $\textit{Some}\,(\textit{flex}\,r\,\textit{id}\,s\,v) =
   \textit{decode}(\textit{retrieve}\,(r^\uparrow \backslash s)\,v)\,r$
@@ -1081,7 +1113,7 @@
      second copy of $r$ in \eqref{derivex} will never contribute to a
      value, because POSIX lexing will always prefer matching a string
      with the first copy. So it could be safely removed without affecting the correctness of the algorithm.
-     The dilemma with the simple-minded
+     The issue with the simple-minded
      simplification rules above is that the rule $r + r \Rightarrow r$
      will never be applicable because as can be seen in this example the
      regular expressions are not next to each other but separated by another regular expression.
@@ -1135,11 +1167,12 @@
      Isabelle/HOL as
 
      \begin{center}
-     \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {\hspace{1mm}}l@ {}}
+     \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
      @{thm (lhs) distinctWith.simps(1)} & $\dn$ & @{thm (rhs) distinctWith.simps(1)}\\
      @{thm (lhs) distinctWith.simps(2)} & $\dn$ &
-     @{text "if (\<exists> y \<in> acc. eq x y)"} & @{text "then distinctWith xs eq acc"}\\
-     & & & @{text "else x :: distinctWith xs eq ({x} \<union> acc)"}
+     @{text "if (\<exists> y \<in> acc. eq x y)"} \\
+     & & @{text "then distinctWith xs eq acc"}\\
+     & & @{text "else x :: distinctWith xs eq ({x} \<union> acc)"}
      \end{tabular}
      \end{center}
 
@@ -1185,6 +1218,8 @@
      \multicolumn{3}{@ {}c}{@{thm (lhs) flts.simps(1)} $\dn$ @{thm (rhs) flts.simps(1)} \qquad\qquad\qquad\qquad
      @{thm (lhs) flts.simps(2)} $\dn$ @{thm (rhs) flts.simps(2)}}\smallskip\\
      @{thm (lhs) flts.simps(3)[of "bs'" "rs'"]} & $\dn$ & @{thm (rhs) flts.simps(3)[of "bs'" "rs'"]}\\
+     \multicolumn{3}{@ {}c}{@{text "flts (r :: rs)"} $\dn$ @{text "r :: flts rs"}
+     \hspace{5mm}(otherwise)}
      \end{tabular}
      \end{center}
 
@@ -1198,15 +1233,15 @@
      sequences according to the usual rules about @{text ZERO}s and @{text ONE}s:
 
      \begin{center}
-     \begin{tabular}{c@ {\hspace{5mm}}c}
-     \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+     \begin{tabular}{@ {}c@ {\hspace{4mm}}c@ {}}
+     \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
      @{text "bsimpALTs bs []"}  & $\dn$ & @{text "ZERO"}\\
      @{text "bsimpALTs bs [r]"} & $\dn$ & @{text "fuse bs r"}\\
      @{text "bsimpALTs bs rs"}  & $\dn$ & @{text "ALTs bs rs"}\\
      \mbox{}\\
      \end{tabular}
      &
-     \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+     \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
      @{text "bsimpSEQ bs _ ZERO"}  & $\dn$ & @{text "ZERO"}\\
      @{text "bsimpSEQ bs ZERO _"} & $\dn$ & @{text "ZERO"}\\
      @{text "bsimpSEQ bs\<^sub>1 (ONE bs\<^sub>2) r\<^sub>2"}
@@ -1267,9 +1302,10 @@
      \begin{center}
 \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
   $\textit{blexer}^+\;r\,s$ & $\dn$ &
-      $\textit{let}\;r_{der} = (r^\uparrow)\backslash_{bsimp}\, s\;\textit{in}$                
-      $\;\;\textit{if}\; \textit{bnullable}(r_{der}) \;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,r_{der})\,r
-       \;\;\textit{else}\;\textit{None}$
+      $\textit{let}\;r_{der} = (r^\uparrow)\backslash_{bsimp}\, s\;\textit{in}$\\                
+      & & $\;\;\textit{if}\; \textit{bnullable}(r_{der})$\\
+      & & $\;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,r_{der})\,r$\\
+      & & $\;\;\textit{else}\;\textit{None}$
 \end{tabular}
 \end{center}
 
@@ -1421,7 +1457,7 @@
   \end{figure}
 *}
 
-section {* Finiteness of Derivatives *}
+section {* Finite Bound for the Size of Derivatives *}
 
 text {*
 
@@ -1443,28 +1479,31 @@
 @{term "AONE bs"} and @{term "ACHAR bs c"} are straightforward. The interesting case is
 for sequences of the form @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}. In this case our induction
 hypotheses state $\exists N_1. \forall s. \; \llbracket{}@{term "bders_simp r\<^sub>1 s"}\rrbracket \leq N_1$ and
-$\exists N_2. \forall s. \; \llbracket@{term "bders_simp r\<^sub>2 s"}\rrbracket \leq N_2$. We can reason as follows
+$\exists N_2. \forall s. \; \llbracket@{term "bders_simp r\<^sub>2 s"}\rrbracket \leq N_2$. We can reason as follows\medskip
 %
-\begin{center}
+%!\begin{center}
+
+\noindent\begin{minipage}{\textwidth}
 \begin{tabular}{lcll}
 & & $ \llbracket@{term "bders_simp (ASEQ bs r\<^sub>1 r\<^sub>2) s"}\rrbracket$\\
 & $ = $ & $\llbracket bsimp\,(\textit{ALTs}\;bs\;((@{term "ASEQ [] (bders_simp r\<^sub>1 s) r\<^sub>2"}) ::
-    [@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suffix}(@{text r}_1, s)]))\rrbracket $ & (1) \\
+    [@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suf}(@{text r}_1, s)]))\rrbracket $ & (1) \\
 & $\leq$ &
     $\llbracket\textit{distinctWith}\,((@{term "ASEQ [] (bders_simp r\<^sub>1 s) r\<^sub>2"}) ::
-    [@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suffix}(@{text r}_1, s)])\,\approx\;@{term "{}"}\rrbracket + 1 $ & (2) \\
+    [@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suf}(@{text r}_1, s)])\,\approx\;@{term "{}"}\rrbracket + 1 $ & (2) \\
 & $\leq$ & $\llbracket@{term "ASEQ [] (bders_simp r\<^sub>1 s) r\<^sub>2"}\rrbracket +
-             \llbracket\textit{distinctWith}\,[@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suffix}(@{text r}_1, s)]\,\approx\;@{term "{}"}\rrbracket + 1 $ & (3) \\
+             \llbracket\textit{distinctWith}\,[@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suf}(@{text r}_1, s)]\,\approx\;@{term "{}"}\rrbracket + 1 $ & (3) \\
 & $\leq$ & $N_1 + \llbracket r_2\rrbracket + 2 +
-      \llbracket\textit{distinctWith}\,[@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suffix}(@{text r}_1, s)]\,\approx\;@{term "{}"}\rrbracket$ & (4)\\
+      \llbracket\textit{distinctWith}\,[@{term "bders_simp r\<^sub>2 s'"} \;|\; s' \in \textit{Suf}(@{text r}_1, s)]\,\approx\;@{term "{}"}\rrbracket$ & (4)\\
 & $\leq$ & $N_1 + \llbracket r_2\rrbracket + 2 + l_{N_{2}} * N_{2}$ & (5)
 \end{tabular}
-\end{center}
+\end{minipage}\medskip
+%!\end{center}
 
 % tell Chengsong about Indian paper of closed forms of derivatives
 
 \noindent
-where in (1) the $\textit{Suffix}(@{text "r"}_1, s)$ are all the suffixes of $s$ where @{term "bders_simp r\<^sub>1 s'"} is nullable ($s'$ being a suffix of $s$).
+where in (1) the $\textit{Suf}(@{text "r"}_1, s)$ are all the suffixes of $s$ where @{term "bders_simp r\<^sub>1 s'"} is nullable ($s'$ being a suffix of $s$).
 In (3) we know that  $\llbracket@{term "ASEQ [] (bders_simp r\<^sub>1 s) r\<^sub>2"}\rrbracket$ is 
 bounded by $N_1 + \llbracket{}r_2\rrbracket + 1$. In (5) we know the list comprehension contains only regular expressions of size smaller
 than $N_2$. The list length after @{text distinctWith} is bounded by a number, which we call $l_{N_2}$. It stands
@@ -1502,7 +1541,23 @@
 \noindent
 where the @{text "Left"}-alternatives get priority. However, this violates
 the POSIX rules and we have not been able to
-reconcile this problem. Therefore we leave better bounds for future work.\\[-6.5mm]
+reconcile this problem. Therefore we leave better bounds for future work.%!\\[-6.5mm]
+
+Note that while Antimirov was able to give a bound on the \emph{size}
+of his partial derivatives~\cite{Antimirov95}, Brzozowski gave a bound
+on the \emph{number} of derivatives, provided they are quotient via
+ACI rules \cite{Brzozowski1964}. Brozozowski's result is crucial when one
+uses derivatives for obtaining an automaton (it essentially bounds
+the number of states). However, this result does \emph{not}
+transfer to our setting where we are interested in the \emph{size} of the
+derivatives. For example it is not true for our derivatives that the
+set of of derivatives $r \backslash s$ for a given $r$ and all strings
+$s$ is finite. This is because for our annotated regular expressions
+the bitcode annotation is dependent on the number of iterations that
+are needed for STAR-regular expressions. Since we want to do lexing
+by calculating (as fast as possible) derivatives, the bound on the size
+of the derivatives is important, not the number of derivatives.
+
 
 *}
 
@@ -1638,7 +1693,10 @@
 
 %%\bibliographystyle{plain}
 \bibliography{root}
+*}
 
+(*<*)
+text {*
 \newpage
 \appendix
 
@@ -1739,7 +1797,7 @@
      if and only if @{term "L (erase (r\<^sub>2)) \<subseteq> L (erase (r\<^sub>1))"}.
      \end{proof}
 *}
-
+(*>*)
 (*<*)
 end
 (*>*)
\ No newline at end of file