--- a/thys/LexerExt.thy Thu Mar 02 12:39:27 2017 +0000
+++ b/thys/LexerExt.thy Sat Mar 04 21:35:12 2017 +0000
@@ -62,16 +62,16 @@
unfolding Der_def
by auto
+lemma Der_Sequ [simp]:
+ shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
+unfolding Der_def Sequ_def
+by (auto simp add: Cons_eq_append_conv)
+
lemma Der_union [simp]:
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto
-lemma Der_Sequ [simp]:
- shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
-unfolding Der_def Sequ_def
-by (auto simp add: Cons_eq_append_conv)
-
lemma Der_UNION:
shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
by (auto simp add: Der_def)