--- a/thys/Paper/Paper.thy Wed Feb 24 21:08:35 2016 +0000
+++ b/thys/Paper/Paper.thy Thu Feb 25 12:17:31 2016 +0000
@@ -16,8 +16,8 @@
Sequ ("_ @ _" [78,77] 63) and
injval ("inj _ _ _" [1000,77,1000] 77) and
projval ("proj _ _ _" [1000,77,1000] 77) and
- length ("len _" [78] 73) and
- ValOrd ("_ \<succeq>\<^bsub>_\<^esub> _" [78,77,77] 73)
+ length ("len _" [78] 73)
+ (* and ValOrd ("_ \<succeq>\<^bsub>_\<^esub> _" [78,77,77] 73) *)
(*>*)
section {* Introduction *}
@@ -328,24 +328,6 @@
to the cases above.
*}
-text {*
- \noindent
- Things we have proved about our version of the Sulzmann ordering
-
- \begin{center}
- \begin{tabular}{c}
- @{thm[mode=IfThen] ValOrd_refl[of "v" "r"]}\medskip\\
- %@ {thm[mode=IfThen] ValOrd_total[of "v\<^sub>1" "r" "v\<^sub>2"]}
- \end{tabular}
- \end{center}\bigskip
-
- \noindent
- Things we like to prove, but cannot:\bigskip
-
- If @{term "s \<in> r \<rightarrow> v\<^sub>1"}, @{term "\<turnstile> v\<^sub>2 : r"}, then @{term "v\<^sub>1 \<succ>r v\<^sub>2"}
-
-*}
-
text {*
%\noindent