ChengsongTanPhdThesis/Chapters/Bitcoded2.tex
changeset 538 8016a2480704
parent 532 cc54ce075db5
child 539 7cf9f17aa179
--- a/ChengsongTanPhdThesis/Chapters/Bitcoded2.tex	Mon Jun 06 23:17:45 2022 +0100
+++ b/ChengsongTanPhdThesis/Chapters/Bitcoded2.tex	Thu Jun 09 12:57:53 2022 +0100
@@ -11,6 +11,119 @@
 
 
 
+Now we introduce the simplifications, which is why we introduce the 
+bitcodes in the first place.
+
+\subsection*{Simplification Rules}
+
+This section introduces aggressive (in terms of size) simplification rules
+on annotated regular expressions
+to keep derivatives small. Such simplifications are promising
+as we have
+generated test data that show
+that a good tight bound can be achieved. We could only
+partially cover the search space as there are infinitely many regular
+expressions and strings. 
+
+One modification we introduced is to allow a list of annotated regular
+expressions in the $\sum$ constructor. This allows us to not just
+delete unnecessary $\ZERO$s and $\ONE$s from regular expressions, but
+also unnecessary ``copies'' of regular expressions (very similar to
+simplifying $r + r$ to just $r$, but in a more general setting). Another
+modification is that we use simplification rules inspired by Antimirov's
+work on partial derivatives. They maintain the idea that only the first
+``copy'' of a regular expression in an alternative contributes to the
+calculation of a POSIX value. All subsequent copies can be pruned away from
+the regular expression. A recursive definition of our  simplification function 
+that looks somewhat similar to our Scala code is given below:
+%\comment{Use $\ZERO$, $\ONE$ and so on. 
+%Is it $ALTS$ or $ALTS$?}\\
+
+\begin{center}
+  \begin{tabular}{@{}lcl@{}}
+   
+  $\textit{simp} \; (_{bs}a_1\cdot a_2)$ & $\dn$ & $ (\textit{simp} \; a_1, \textit{simp}  \; a_2) \; \textit{match} $ \\
+   &&$\quad\textit{case} \; (\ZERO, \_) \Rightarrow  \ZERO$ \\
+   &&$\quad\textit{case} \; (\_, \ZERO) \Rightarrow  \ZERO$ \\
+   &&$\quad\textit{case} \;  (\ONE, a_2') \Rightarrow  \textit{fuse} \; bs \;  a_2'$ \\
+   &&$\quad\textit{case} \; (a_1', \ONE) \Rightarrow  \textit{fuse} \; bs \;  a_1'$ \\
+   &&$\quad\textit{case} \; (a_1', a_2') \Rightarrow   _{bs}a_1' \cdot a_2'$ \\
+
+  $\textit{simp} \; (_{bs}\sum \textit{as})$ & $\dn$ & $\textit{distinct}( \textit{flatten} ( \textit{map} \; simp \; as)) \; \textit{match} $ \\
+  &&$\quad\textit{case} \; [] \Rightarrow  \ZERO$ \\
+   &&$\quad\textit{case} \; a :: [] \Rightarrow  \textit{fuse bs a}$ \\
+   &&$\quad\textit{case} \;  as' \Rightarrow _{bs}\sum \textit{as'}$\\ 
+
+   $\textit{simp} \; a$ & $\dn$ & $\textit{a} \qquad \textit{otherwise}$   
+\end{tabular}    
+\end{center}    
+
+\noindent
+The simplification does a pattern matching on the regular expression.
+When it detected that the regular expression is an alternative or
+sequence, it will try to simplify its child regular expressions
+recursively and then see if one of the children turns into $\ZERO$ or
+$\ONE$, which might trigger further simplification at the current level.
+The most involved part is the $\sum$ clause, where we use two
+auxiliary functions $\textit{flatten}$ and $\textit{distinct}$ to open up nested
+alternatives and reduce as many duplicates as possible. Function
+$\textit{distinct}$  keeps the first occurring copy only and removes all later ones
+when detected duplicates. Function $\textit{flatten}$ opens up nested $\sum$s.
+Its recursive definition is given below:
+
+ \begin{center}
+  \begin{tabular}{@{}lcl@{}}
+  $\textit{flatten} \; (_{bs}\sum \textit{as}) :: \textit{as'}$ & $\dn$ & $(\textit{map} \;
+     (\textit{fuse}\;bs)\; \textit{as}) \; @ \; \textit{flatten} \; as' $ \\
+  $\textit{flatten} \; \ZERO :: as'$ & $\dn$ & $ \textit{flatten} \;  \textit{as'} $ \\
+    $\textit{flatten} \; a :: as'$ & $\dn$ & $a :: \textit{flatten} \; \textit{as'}$ \quad(otherwise) 
+\end{tabular}    
+\end{center}  
+
+\noindent
+Here $\textit{flatten}$ behaves like the traditional functional programming flatten
+function, except that it also removes $\ZERO$s. Or in terms of regular expressions, it
+removes parentheses, for example changing $a+(b+c)$ into $a+b+c$.
+
+Having defined the $\simp$ function,
+we can use the previous notation of  natural
+extension from derivative w.r.t.~character to derivative
+w.r.t.~string:%\comment{simp in  the [] case?}
+
+\begin{center}
+\begin{tabular}{lcl}
+$r \backslash_{simp} (c\!::\!s) $ & $\dn$ & $(r \backslash_{simp}\, c) \backslash_{simp}\, s$ \\
+$r \backslash_{simp} [\,] $ & $\dn$ & $r$
+\end{tabular}
+\end{center}
+
+\noindent
+to obtain an optimised version of the algorithm:
+
+ \begin{center}
+\begin{tabular}{lcl}
+  $\textit{blexer\_simp}\;r\,s$ & $\dn$ &
+      $\textit{let}\;a = (r^\uparrow)\backslash_{simp}\, s\;\textit{in}$\\                
+  & & $\;\;\textit{if}\; \textit{bnullable}(a)$\\
+  & & $\;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,a)\,r$\\
+  & & $\;\;\textit{else}\;\textit{None}$
+\end{tabular}
+\end{center}
+
+\noindent
+This algorithm keeps the regular expression size small, for example,
+with this simplification our previous $(a + aa)^*$ example's 8000 nodes
+will be reduced to just 17 and stays constant, no matter how long the
+input string is.
+
+
+
+
+
+
+
+
+
 
 %----------------------------------------------------------------------------------------
 %	SECTION common identities