--- a/AFP-Submission/Regular_Set.thy Tue Jun 14 12:37:46 2016 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,481 +0,0 @@
-(* Author: Tobias Nipkow, Alex Krauss, Christian Urban *)
-
-section "Regular sets"
-
-theory Regular_Set
-imports Main
-begin
-
-type_synonym 'a lang = "'a list set"
-
-definition conc :: "'a lang \<Rightarrow> 'a lang \<Rightarrow> 'a lang" (infixr "@@" 75) where
-"A @@ B = {xs@ys | xs ys. xs:A & ys:B}"
-
-text {* checks the code preprocessor for set comprehensions *}
-export_code conc checking SML
-
-overloading lang_pow == "compow :: nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
-begin
- primrec lang_pow :: "nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang" where
- "lang_pow 0 A = {[]}" |
- "lang_pow (Suc n) A = A @@ (lang_pow n A)"
-end
-
-text {* for code generation *}
-
-definition lang_pow :: "nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang" where
- lang_pow_code_def [code_abbrev]: "lang_pow = compow"
-
-lemma [code]:
- "lang_pow (Suc n) A = A @@ (lang_pow n A)"
- "lang_pow 0 A = {[]}"
- by (simp_all add: lang_pow_code_def)
-
-hide_const (open) lang_pow
-
-definition star :: "'a lang \<Rightarrow> 'a lang" where
-"star A = (\<Union>n. A ^^ n)"
-
-
-subsection{* @{term "op @@"} *}
-
-lemma concI[simp,intro]: "u : A \<Longrightarrow> v : B \<Longrightarrow> u@v : A @@ B"
-by (auto simp add: conc_def)
-
-lemma concE[elim]:
-assumes "w \<in> A @@ B"
-obtains u v where "u \<in> A" "v \<in> B" "w = u@v"
-using assms by (auto simp: conc_def)
-
-lemma conc_mono: "A \<subseteq> C \<Longrightarrow> B \<subseteq> D \<Longrightarrow> A @@ B \<subseteq> C @@ D"
-by (auto simp: conc_def)
-
-lemma conc_empty[simp]: shows "{} @@ A = {}" and "A @@ {} = {}"
-by auto
-
-lemma conc_epsilon[simp]: shows "{[]} @@ A = A" and "A @@ {[]} = A"
-by (simp_all add:conc_def)
-
-lemma conc_assoc: "(A @@ B) @@ C = A @@ (B @@ C)"
-by (auto elim!: concE) (simp only: append_assoc[symmetric] concI)
-
-lemma conc_Un_distrib:
-shows "A @@ (B \<union> C) = A @@ B \<union> A @@ C"
-and "(A \<union> B) @@ C = A @@ C \<union> B @@ C"
-by auto
-
-lemma conc_UNION_distrib:
-shows "A @@ UNION I M = UNION I (%i. A @@ M i)"
-and "UNION I M @@ A = UNION I (%i. M i @@ A)"
-by auto
-
-lemma conc_subset_lists: "A \<subseteq> lists S \<Longrightarrow> B \<subseteq> lists S \<Longrightarrow> A @@ B \<subseteq> lists S"
-by(fastforce simp: conc_def in_lists_conv_set)
-
-lemma Nil_in_conc[simp]: "[] \<in> A @@ B \<longleftrightarrow> [] \<in> A \<and> [] \<in> B"
-by (metis append_is_Nil_conv concE concI)
-
-lemma concI_if_Nil1: "[] \<in> A \<Longrightarrow> xs : B \<Longrightarrow> xs \<in> A @@ B"
-by (metis append_Nil concI)
-
-lemma conc_Diff_if_Nil1: "[] \<in> A \<Longrightarrow> A @@ B = (A - {[]}) @@ B \<union> B"
-by (fastforce elim: concI_if_Nil1)
-
-lemma concI_if_Nil2: "[] \<in> B \<Longrightarrow> xs : A \<Longrightarrow> xs \<in> A @@ B"
-by (metis append_Nil2 concI)
-
-lemma conc_Diff_if_Nil2: "[] \<in> B \<Longrightarrow> A @@ B = A @@ (B - {[]}) \<union> A"
-by (fastforce elim: concI_if_Nil2)
-
-lemma singleton_in_conc:
- "[x] : A @@ B \<longleftrightarrow> [x] : A \<and> [] : B \<or> [] : A \<and> [x] : B"
-by (fastforce simp: Cons_eq_append_conv append_eq_Cons_conv
- conc_Diff_if_Nil1 conc_Diff_if_Nil2)
-
-
-subsection{* @{term "A ^^ n"} *}
-
-lemma lang_pow_add: "A ^^ (n + m) = A ^^ n @@ A ^^ m"
-by (induct n) (auto simp: conc_assoc)
-
-lemma lang_pow_empty: "{} ^^ n = (if n = 0 then {[]} else {})"
-by (induct n) auto
-
-lemma lang_pow_empty_Suc[simp]: "({}::'a lang) ^^ Suc n = {}"
-by (simp add: lang_pow_empty)
-
-lemma conc_pow_comm:
- shows "A @@ (A ^^ n) = (A ^^ n) @@ A"
-by (induct n) (simp_all add: conc_assoc[symmetric])
-
-lemma length_lang_pow_ub:
- "ALL w : A. length w \<le> k \<Longrightarrow> w : A^^n \<Longrightarrow> length w \<le> k*n"
-by(induct n arbitrary: w) (fastforce simp: conc_def)+
-
-lemma length_lang_pow_lb:
- "ALL w : A. length w \<ge> k \<Longrightarrow> w : A^^n \<Longrightarrow> length w \<ge> k*n"
-by(induct n arbitrary: w) (fastforce simp: conc_def)+
-
-lemma lang_pow_subset_lists: "A \<subseteq> lists S \<Longrightarrow> A ^^ n \<subseteq> lists S"
-by(induction n)(auto simp: conc_subset_lists[OF assms])
-
-
-subsection{* @{const star} *}
-
-lemma star_subset_lists: "A \<subseteq> lists S \<Longrightarrow> star A \<subseteq> lists S"
-unfolding star_def by(blast dest: lang_pow_subset_lists)
-
-lemma star_if_lang_pow[simp]: "w : A ^^ n \<Longrightarrow> w : star A"
-by (auto simp: star_def)
-
-lemma Nil_in_star[iff]: "[] : star A"
-proof (rule star_if_lang_pow)
- show "[] : A ^^ 0" by simp
-qed
-
-lemma star_if_lang[simp]: assumes "w : A" shows "w : star A"
-proof (rule star_if_lang_pow)
- show "w : A ^^ 1" using `w : A` by simp
-qed
-
-lemma append_in_starI[simp]:
-assumes "u : star A" and "v : star A" shows "u@v : star A"
-proof -
- from `u : star A` obtain m where "u : A ^^ m" by (auto simp: star_def)
- moreover
- from `v : star A` obtain n where "v : A ^^ n" by (auto simp: star_def)
- ultimately have "u@v : A ^^ (m+n)" by (simp add: lang_pow_add)
- thus ?thesis by simp
-qed
-
-lemma conc_star_star: "star A @@ star A = star A"
-by (auto simp: conc_def)
-
-lemma conc_star_comm:
- shows "A @@ star A = star A @@ A"
-unfolding star_def conc_pow_comm conc_UNION_distrib
-by simp
-
-lemma star_induct[consumes 1, case_names Nil append, induct set: star]:
-assumes "w : star A"
- and "P []"
- and step: "!!u v. u : A \<Longrightarrow> v : star A \<Longrightarrow> P v \<Longrightarrow> P (u@v)"
-shows "P w"
-proof -
- { fix n have "w : A ^^ n \<Longrightarrow> P w"
- by (induct n arbitrary: w) (auto intro: `P []` step star_if_lang_pow) }
- with `w : star A` show "P w" by (auto simp: star_def)
-qed
-
-lemma star_empty[simp]: "star {} = {[]}"
-by (auto elim: star_induct)
-
-lemma star_epsilon[simp]: "star {[]} = {[]}"
-by (auto elim: star_induct)
-
-lemma star_idemp[simp]: "star (star A) = star A"
-by (auto elim: star_induct)
-
-lemma star_unfold_left: "star A = A @@ star A \<union> {[]}" (is "?L = ?R")
-proof
- show "?L \<subseteq> ?R" by (rule, erule star_induct) auto
-qed auto
-
-lemma concat_in_star: "set ws \<subseteq> A \<Longrightarrow> concat ws : star A"
-by (induct ws) simp_all
-
-lemma in_star_iff_concat:
- "w : star A = (EX ws. set ws \<subseteq> A & w = concat ws)"
- (is "_ = (EX ws. ?R w ws)")
-proof
- assume "w : star A" thus "EX ws. ?R w ws"
- proof induct
- case Nil have "?R [] []" by simp
- thus ?case ..
- next
- case (append u v)
- moreover
- then obtain ws where "set ws \<subseteq> A \<and> v = concat ws" by blast
- ultimately have "?R (u@v) (u#ws)" by auto
- thus ?case ..
- qed
-next
- assume "EX us. ?R w us" thus "w : star A"
- by (auto simp: concat_in_star)
-qed
-
-lemma star_conv_concat: "star A = {concat ws|ws. set ws \<subseteq> A}"
-by (fastforce simp: in_star_iff_concat)
-
-lemma star_insert_eps[simp]: "star (insert [] A) = star(A)"
-proof-
- { fix us
- have "set us \<subseteq> insert [] A \<Longrightarrow> EX vs. concat us = concat vs \<and> set vs \<subseteq> A"
- (is "?P \<Longrightarrow> EX vs. ?Q vs")
- proof
- let ?vs = "filter (%u. u \<noteq> []) us"
- show "?P \<Longrightarrow> ?Q ?vs" by (induct us) auto
- qed
- } thus ?thesis by (auto simp: star_conv_concat)
-qed
-
-lemma star_unfold_left_Nil: "star A = (A - {[]}) @@ (star A) \<union> {[]}"
-by (metis insert_Diff_single star_insert_eps star_unfold_left)
-
-lemma star_Diff_Nil_fold: "(A - {[]}) @@ star A = star A - {[]}"
-proof -
- have "[] \<notin> (A - {[]}) @@ star A" by simp
- thus ?thesis using star_unfold_left_Nil by blast
-qed
-
-lemma star_decom:
- assumes a: "x \<in> star A" "x \<noteq> []"
- shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> star A"
-using a by (induct rule: star_induct) (blast)+
-
-
-subsection {* Left-Quotients of languages *}
-
-definition Deriv :: "'a \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
-where "Deriv x A = { xs. x#xs \<in> A }"
-
-definition Derivs :: "'a list \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
-where "Derivs xs A = { ys. xs @ ys \<in> A }"
-
-abbreviation
- Derivss :: "'a list \<Rightarrow> 'a lang set \<Rightarrow> 'a lang"
-where
- "Derivss s As \<equiv> \<Union> (Derivs s ` As)"
-
-
-lemma Deriv_empty[simp]: "Deriv a {} = {}"
- and Deriv_epsilon[simp]: "Deriv a {[]} = {}"
- and Deriv_char[simp]: "Deriv a {[b]} = (if a = b then {[]} else {})"
- and Deriv_union[simp]: "Deriv a (A \<union> B) = Deriv a A \<union> Deriv a B"
- and Deriv_inter[simp]: "Deriv a (A \<inter> B) = Deriv a A \<inter> Deriv a B"
- and Deriv_compl[simp]: "Deriv a (-A) = - Deriv a A"
- and Deriv_Union[simp]: "Deriv a (Union M) = Union(Deriv a ` M)"
- and Deriv_UN[simp]: "Deriv a (UN x:I. S x) = (UN x:I. Deriv a (S x))"
-by (auto simp: Deriv_def)
-
-lemma Der_conc [simp]:
- shows "Deriv c (A @@ B) = (Deriv c A) @@ B \<union> (if [] \<in> A then Deriv c B else {})"
-unfolding Deriv_def conc_def
-by (auto simp add: Cons_eq_append_conv)
-
-lemma Deriv_star [simp]:
- shows "Deriv c (star A) = (Deriv c A) @@ star A"
-proof -
- have "Deriv c (star A) = Deriv c ({[]} \<union> A @@ star A)"
- by (metis star_unfold_left sup.commute)
- also have "... = Deriv c (A @@ star A)"
- unfolding Deriv_union by (simp)
- also have "... = (Deriv c A) @@ (star A) \<union> (if [] \<in> A then Deriv c (star A) else {})"
- by simp
- also have "... = (Deriv c A) @@ star A"
- unfolding conc_def Deriv_def
- using star_decom by (force simp add: Cons_eq_append_conv)
- finally show "Deriv c (star A) = (Deriv c A) @@ star A" .
-qed
-
-lemma Deriv_diff[simp]:
- shows "Deriv c (A - B) = Deriv c A - Deriv c B"
-by(auto simp add: Deriv_def)
-
-lemma Deriv_lists[simp]: "c : S \<Longrightarrow> Deriv c (lists S) = lists S"
-by(auto simp add: Deriv_def)
-
-lemma Derivs_simps [simp]:
- shows "Derivs [] A = A"
- and "Derivs (c # s) A = Derivs s (Deriv c A)"
- and "Derivs (s1 @ s2) A = Derivs s2 (Derivs s1 A)"
-unfolding Derivs_def Deriv_def by auto
-
-lemma in_fold_Deriv: "v \<in> fold Deriv w L \<longleftrightarrow> w @ v \<in> L"
- by (induct w arbitrary: L) (simp_all add: Deriv_def)
-
-lemma Derivs_alt_def: "Derivs w L = fold Deriv w L"
- by (induct w arbitrary: L) simp_all
-
-
-subsection {* Shuffle product *}
-
-fun shuffle where
- "shuffle [] ys = {ys}"
-| "shuffle xs [] = {xs}"
-| "shuffle (x # xs) (y # ys) =
- {x # w | w . w \<in> shuffle xs (y # ys)} \<union>
- {y # w | w . w \<in> shuffle (x # xs) ys}"
-
-lemma shuffle_empty2[simp]: "shuffle xs [] = {xs}"
- by (cases xs) auto
-
-lemma Nil_in_shuffle[simp]: "[] \<in> shuffle xs ys \<longleftrightarrow> xs = [] \<and> ys = []"
- by (induct xs ys rule: shuffle.induct) auto
-
-definition Shuffle (infixr "\<parallel>" 80) where
- "Shuffle A B = \<Union>{shuffle xs ys | xs ys. xs \<in> A \<and> ys \<in> B}"
-
-lemma shuffleE:
- "zs \<in> shuffle xs ys \<Longrightarrow>
- (zs = xs \<Longrightarrow> ys = [] \<Longrightarrow> P) \<Longrightarrow>
- (zs = ys \<Longrightarrow> xs = [] \<Longrightarrow> P) \<Longrightarrow>
- (\<And>x xs' z zs'. xs = x # xs' \<Longrightarrow> zs = z # zs' \<Longrightarrow> x = z \<Longrightarrow> zs' \<in> shuffle xs' ys \<Longrightarrow> P) \<Longrightarrow>
- (\<And>y ys' z zs'. ys = y # ys' \<Longrightarrow> zs = z # zs' \<Longrightarrow> y = z \<Longrightarrow> zs' \<in> shuffle xs ys' \<Longrightarrow> P) \<Longrightarrow> P"
- by (induct xs ys rule: shuffle.induct) auto
-
-lemma Cons_in_shuffle_iff:
- "z # zs \<in> shuffle xs ys \<longleftrightarrow>
- (xs \<noteq> [] \<and> hd xs = z \<and> zs \<in> shuffle (tl xs) ys \<or>
- ys \<noteq> [] \<and> hd ys = z \<and> zs \<in> shuffle xs (tl ys))"
- by (induct xs ys rule: shuffle.induct) auto
-
-lemma Deriv_Shuffle[simp]:
- "Deriv a (A \<parallel> B) = Deriv a A \<parallel> B \<union> A \<parallel> Deriv a B"
- unfolding Shuffle_def Deriv_def by (fastforce simp: Cons_in_shuffle_iff neq_Nil_conv)
-
-lemma shuffle_subset_lists:
- assumes "A \<subseteq> lists S" "B \<subseteq> lists S"
- shows "A \<parallel> B \<subseteq> lists S"
-unfolding Shuffle_def proof safe
- fix x and zs xs ys :: "'a list"
- assume zs: "zs \<in> shuffle xs ys" "x \<in> set zs" and "xs \<in> A" "ys \<in> B"
- with assms have "xs \<in> lists S" "ys \<in> lists S" by auto
- with zs show "x \<in> S" by (induct xs ys arbitrary: zs rule: shuffle.induct) auto
-qed
-
-lemma Nil_in_Shuffle[simp]: "[] \<in> A \<parallel> B \<longleftrightarrow> [] \<in> A \<and> [] \<in> B"
- unfolding Shuffle_def by force
-
-lemma shuffle_Un_distrib:
-shows "A \<parallel> (B \<union> C) = A \<parallel> B \<union> A \<parallel> C"
-and "A \<parallel> (B \<union> C) = A \<parallel> B \<union> A \<parallel> C"
-unfolding Shuffle_def by fast+
-
-lemma shuffle_UNION_distrib:
-shows "A \<parallel> UNION I M = UNION I (%i. A \<parallel> M i)"
-and "UNION I M \<parallel> A = UNION I (%i. M i \<parallel> A)"
-unfolding Shuffle_def by fast+
-
-lemma Shuffle_empty[simp]:
- "A \<parallel> {} = {}"
- "{} \<parallel> B = {}"
- unfolding Shuffle_def by auto
-
-lemma Shuffle_eps[simp]:
- "A \<parallel> {[]} = A"
- "{[]} \<parallel> B = B"
- unfolding Shuffle_def by auto
-
-
-subsection {* Arden's Lemma *}
-
-lemma arden_helper:
- assumes eq: "X = A @@ X \<union> B"
- shows "X = (A ^^ Suc n) @@ X \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)"
-proof (induct n)
- case 0
- show "X = (A ^^ Suc 0) @@ X \<union> (\<Union>m\<le>0. (A ^^ m) @@ B)"
- using eq by simp
-next
- case (Suc n)
- have ih: "X = (A ^^ Suc n) @@ X \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)" by fact
- also have "\<dots> = (A ^^ Suc n) @@ (A @@ X \<union> B) \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)" using eq by simp
- also have "\<dots> = (A ^^ Suc (Suc n)) @@ X \<union> ((A ^^ Suc n) @@ B) \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)"
- by (simp add: conc_Un_distrib conc_assoc[symmetric] conc_pow_comm)
- also have "\<dots> = (A ^^ Suc (Suc n)) @@ X \<union> (\<Union>m\<le>Suc n. (A ^^ m) @@ B)"
- by (auto simp add: le_Suc_eq)
- finally show "X = (A ^^ Suc (Suc n)) @@ X \<union> (\<Union>m\<le>Suc n. (A ^^ m) @@ B)" .
-qed
-
-lemma Arden:
- assumes "[] \<notin> A"
- shows "X = A @@ X \<union> B \<longleftrightarrow> X = star A @@ B"
-proof
- assume eq: "X = A @@ X \<union> B"
- { fix w assume "w : X"
- let ?n = "size w"
- from `[] \<notin> A` have "ALL u : A. length u \<ge> 1"
- by (metis Suc_eq_plus1 add_leD2 le_0_eq length_0_conv not_less_eq_eq)
- hence "ALL u : A^^(?n+1). length u \<ge> ?n+1"
- by (metis length_lang_pow_lb nat_mult_1)
- hence "ALL u : A^^(?n+1)@@X. length u \<ge> ?n+1"
- by(auto simp only: conc_def length_append)
- hence "w \<notin> A^^(?n+1)@@X" by auto
- hence "w : star A @@ B" using `w : X` using arden_helper[OF eq, where n="?n"]
- by (auto simp add: star_def conc_UNION_distrib)
- } moreover
- { fix w assume "w : star A @@ B"
- hence "EX n. w : A^^n @@ B" by(auto simp: conc_def star_def)
- hence "w : X" using arden_helper[OF eq] by blast
- } ultimately show "X = star A @@ B" by blast
-next
- assume eq: "X = star A @@ B"
- have "star A = A @@ star A \<union> {[]}"
- by (rule star_unfold_left)
- then have "star A @@ B = (A @@ star A \<union> {[]}) @@ B"
- by metis
- also have "\<dots> = (A @@ star A) @@ B \<union> B"
- unfolding conc_Un_distrib by simp
- also have "\<dots> = A @@ (star A @@ B) \<union> B"
- by (simp only: conc_assoc)
- finally show "X = A @@ X \<union> B"
- using eq by blast
-qed
-
-
-lemma reversed_arden_helper:
- assumes eq: "X = X @@ A \<union> B"
- shows "X = X @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))"
-proof (induct n)
- case 0
- show "X = X @@ (A ^^ Suc 0) \<union> (\<Union>m\<le>0. B @@ (A ^^ m))"
- using eq by simp
-next
- case (Suc n)
- have ih: "X = X @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))" by fact
- also have "\<dots> = (X @@ A \<union> B) @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))" using eq by simp
- also have "\<dots> = X @@ (A ^^ Suc (Suc n)) \<union> (B @@ (A ^^ Suc n)) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))"
- by (simp add: conc_Un_distrib conc_assoc)
- also have "\<dots> = X @@ (A ^^ Suc (Suc n)) \<union> (\<Union>m\<le>Suc n. B @@ (A ^^ m))"
- by (auto simp add: le_Suc_eq)
- finally show "X = X @@ (A ^^ Suc (Suc n)) \<union> (\<Union>m\<le>Suc n. B @@ (A ^^ m))" .
-qed
-
-theorem reversed_Arden:
- assumes nemp: "[] \<notin> A"
- shows "X = X @@ A \<union> B \<longleftrightarrow> X = B @@ star A"
-proof
- assume eq: "X = X @@ A \<union> B"
- { fix w assume "w : X"
- let ?n = "size w"
- from `[] \<notin> A` have "ALL u : A. length u \<ge> 1"
- by (metis Suc_eq_plus1 add_leD2 le_0_eq length_0_conv not_less_eq_eq)
- hence "ALL u : A^^(?n+1). length u \<ge> ?n+1"
- by (metis length_lang_pow_lb nat_mult_1)
- hence "ALL u : X @@ A^^(?n+1). length u \<ge> ?n+1"
- by(auto simp only: conc_def length_append)
- hence "w \<notin> X @@ A^^(?n+1)" by auto
- hence "w : B @@ star A" using `w : X` using reversed_arden_helper[OF eq, where n="?n"]
- by (auto simp add: star_def conc_UNION_distrib)
- } moreover
- { fix w assume "w : B @@ star A"
- hence "EX n. w : B @@ A^^n" by (auto simp: conc_def star_def)
- hence "w : X" using reversed_arden_helper[OF eq] by blast
- } ultimately show "X = B @@ star A" by blast
-next
- assume eq: "X = B @@ star A"
- have "star A = {[]} \<union> star A @@ A"
- unfolding conc_star_comm[symmetric]
- by(metis Un_commute star_unfold_left)
- then have "B @@ star A = B @@ ({[]} \<union> star A @@ A)"
- by metis
- also have "\<dots> = B \<union> B @@ (star A @@ A)"
- unfolding conc_Un_distrib by simp
- also have "\<dots> = B \<union> (B @@ star A) @@ A"
- by (simp only: conc_assoc)
- finally show "X = X @@ A \<union> B"
- using eq by blast
-qed
-
-end