--- a/thys/LexerExt.thy Sun Oct 08 14:21:24 2017 +0100
+++ b/thys/LexerExt.thy Tue Oct 10 10:40:44 2017 +0100
@@ -447,8 +447,7 @@
| (null) v1 vs s1 s2 where
"v = Seq v1 (Stars vs)" "s = s1 @ s2" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
"s1 \<in> der c r \<rightarrow> v1" "n = 0"
- "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"
- (* here *)
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"
apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
prefer 2
apply(erule Posix_elims)
@@ -527,11 +526,100 @@
done
qed
next
- case (NMTIMES x1 x2 m s v)
- then show ?case sorry
+ case (NMTIMES r n m s v)
+ have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
+ have "s \<in> der c (NMTIMES r n m) \<rightarrow> v" by fact
+ then consider
+ (cons) v1 vs s1 s2 where
+ "v = Seq v1 (Stars vs)" "s = s1 @ s2"
+ "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> (Stars vs)" "0 < n" "n \<le> m"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))"
+ | (null) v1 vs s1 s2 where
+ "v = Seq v1 (Stars vs)" "s = s1 @ s2" "s2 \<in> (UPNTIMES r (m - 1)) \<rightarrow> (Stars vs)"
+ "s1 \<in> der c r \<rightarrow> v1" "n = 0" "0 < m"
+ "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))"
+ apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
+ prefer 2
+ apply(erule Posix_elims)
+ apply(simp)
+ apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+ apply(clarify)
+ apply(drule_tac x="v1" in meta_spec)
+ apply(drule_tac x="vss" in meta_spec)
+ apply(drule_tac x="s1" in meta_spec)
+ apply(drule_tac x="s2" in meta_spec)
+ apply(simp add: der_correctness Der_def)
+ apply(rotate_tac 5)
+ apply(erule Posix_elims)
+ apply(auto)[2]
+ apply(erule Posix_elims)
+ apply(simp)
+ apply blast
+
+ apply(erule Posix_elims)
+ apply(auto)
+ apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
+ apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
+ apply(clarify)
+ apply simp
+ apply(rotate_tac 6)
+ apply(erule Posix_elims)
+ apply(auto)[2]
+ done
+ then show "(c # s) \<in> (NMTIMES r n m) \<rightarrow> injval (NMTIMES r n m) c v"
+ proof (cases)
+ case cons
+ have "s1 \<in> der c r \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+ moreover
+ have "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> Stars vs" by fact
+ moreover
+ have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact
+ then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+ then have "flat (injval r c v1) \<noteq> []" by simp
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))"
+ by (simp add: der_correctness Der_def)
+ ultimately
+ have "((c # s1) @ s2) \<in> NMTIMES r n m \<rightarrow> Stars (injval r c v1 # vs)"
+ apply (rule_tac Posix.intros)
+ apply(simp_all)
+ apply(case_tac n)
+ apply(simp)
+ using Posix_elims(1) NMTIMES.prems apply auto[1]
+ using cons(5) apply blast
+ apply(simp)
+ apply(rule cons)
+ done
+ then show "(c # s) \<in> NMTIMES r n m \<rightarrow> injval (NMTIMES r n m) c v" using cons by(simp)
+ next
+ case null
+ have "s1 \<in> der c r \<rightarrow> v1" by fact
+ then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
+ moreover
+ have "s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs" by fact
+ moreover
+ have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact
+ then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
+ then have "flat (injval r c v1) \<noteq> []" by simp
+ moreover
+ moreover
+ have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))" by fact
+ then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))"
+ by (simp add: der_correctness Der_def)
+ ultimately
+ have "((c # s1) @ s2) \<in> NMTIMES r 0 m \<rightarrow> Stars (injval r c v1 # vs)"
+ apply (rule_tac Posix.intros) back
+ apply(simp_all)
+ apply(rule null)
+ done
+ then show "(c # s) \<in> NMTIMES r n m \<rightarrow> injval (NMTIMES r n m) c v" using null
+ apply(simp)
+ done
+ qed
qed
-
section {* Lexer Correctness *}
lemma lexer_correct_None: